In this paper, we build an apparatus for measuring the optical transmittance and its uniformity for a semispherical surface at normal incidence; the system is primarily comprised of a traditional double-beam photometric framework and a novel custom-made mechanical structure with multidimensional degrees of freedom. During the measurement process, a key aligning step is adopted to guarantee that the center point of the semispherical surface stands still in the light beam while scanning the hemispherical optical element point by point around the horizontal and vertical axes, which ensures that the laser beam is always normally incident onto the surface of the hemisphere. The experimental results show that the uniformity of the optical transmittance for a semispherical optical glass can be successfully characterized by the system, with a three-cycle repeatability error of 0.026% being demonstrated. Our system solves the problem of traditional spectrophotometers when measuring the spectral property of a hemispherical surface and thus can be popularized in similar applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.003395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!