Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the effects of forest age and season on soil microbial community structure and enzyme activities in Hippophae rhamnoides plantation. The results showed that the amounts of total PLFAs, bacterial PLFAs, and fungal PLFAs increased with the increases of forest age. The highest values presented in mature plantation (CL). Soil enzyme activities showed the same trend as soil microbial communities. The total PLFAs, bacteria PLFAs, and fungal PLFAs exhibited significantly positive correlations with soil pH, total nitrogen, and available phosphorus. In conclusion, forest age and season has significant impacts on soil microbial community structure and enzyme activities. H. rhamnoides plantation is a suitable afforestation model, which would help improve soil fertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201804.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!