In this paper, the CENTURY-based modeling system (complying CENTURY model from a site-based model into spatial model) after being systematically calibrated was used to investigate future climate change under Representative Concentration Pathways Scenario (RCP, 4.5 and 8.5) driven spatio-temporal changes in vegetation net primary productivity (NPP) of Inner Mongolia grassland during 2011-2050. The simulation showed that Inner Mongolia grassland NPP would greatly decrease with a rate of 0.57 g C·m·a (RCP4.5) and 0.89 g C·m·a (RCP8.5). NPP of Inner Mongolia grassland appeared to decrease by approximately 11.6% (2020s), 12.0% (2030s) and 18.0% (2040s) under the RCP4.5 in relation to baseline period, while its reduction could be exacerbated as 23.8% (2020s), 21.2% (2030s) and 30.1% (2040s) in the RCP8.5 at the regional scale. In addition, grassland NPP induced by future climate changes varied between different grassland types and times, strongly correlating with climate scenario. Even for the RCP4.5, however, a great majority (89.7%) of the grassland exhibited a decreasing trend in annual NPP, with 15.6% of the area decreasing by more than 20% compared with the baseline term. Therefore, although future precipitation rising could benefit vegetation growth, it might be still not enough to compensate for the negative effect of warming on the NPP of Inner Mongolia grassland, and the sustainable development of grassland resources might face a greater challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201603.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!