[Identification of ecological corridors and its importance by integrating circuit theory].

Ying Yong Sheng Tai Xue Bao

College of Environment and Planning, Henan University, Kaifeng 475004, Henan, China.

Published: October 2016

Landscape connectivity is considered as an extraordinarily important factor affecting various ecological processes. The least cost path (LCP) on the basis of minimum cumulative resis-tance model (MCRM) may provide a more efficient approach to identify functional connectivity in heterogeneous landscapes, and is already adopted by the research of landscape functional connecti-vity assessment and ecological corridor simulation. Connectivity model on circuit theory (CMCT) replaced the edges in the graph theory with resistors, cost distance with resistance distance to measure the functional connectivity in heterogeneous landscapes. By means of Linkage Mapper tool and Circuitscape software, the simulated landscape generated from SIMMAP 2.0 software was viewed as the study object in this article, aimed at exploring how to integrate MCRM with CMCT to identify ecological corridors and relative importance of landscape factors. The results showed that two models had their individual advantages and mutual complement. MCRM could effectively identify least cost corridors among habitats. CMCT could effectively identify important landscape factor and pinch point, which had important influence on landscape connectivity. We also found that the position of pinch point was not affected by corridor width, which had obvious advantage in the research of identifying the importance of corridors. The integrated method could provide certain scientific basis for regional ecological protection planning and ecological corridor design.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201610.035DOI Listing

Publication Analysis

Top Keywords

ecological corridors
8
landscape connectivity
8
functional connectivity
8
connectivity heterogeneous
8
heterogeneous landscapes
8
ecological corridor
8
effectively identify
8
pinch point
8
landscape
6
connectivity
5

Similar Publications

Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.

View Article and Find Full Text PDF

Monitoring genetic diversity of Torminalis glaberrima for resilient forests in the face of population fragmentation.

Ann Bot

January 2025

Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.

Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.

View Article and Find Full Text PDF

Ranger patrols are essential for biodiversity conservation, particularly in protected areas where they help mitigate poaching of large mammals. Effective patrols reduce poaching and support higher population densities of large mammals. This study investigates the impact of ranger patrols on large mammal sightings in the Central Alborz Protected Area (CAPA), northern Iran, a crucial wildlife corridor with UNESCO-listed Hyrcanian forests and high-altitude grasslands.

View Article and Find Full Text PDF

This study aims to enhance our understanding of the temporal and spatial processes scales governing the evolutionary diversification of Neotropical birds with Trans- and Cis-Andean populations of the species from South and Central America. Through a multilocus analysis of the mitochondrial (CytB and ND2) and nuclear genes (I7BF, I5BF, and G3PDH) of 41 samples representing six subspecies, we describe the existing molecular lineages of , and estimate their demographic dynamics. We used Ecological Niche Modeling (ENM) with six different algorithms to predict the potential distribution of in both present-day and past scenarios, examining the overlap climatic niche between Cis- and Trans-Andean lineages.

View Article and Find Full Text PDF

Comparative analysis of the complete chloroplast genome of seven Wikstroemia taxa (Thymelaeaceae) provides insights into the genome structure and phylogenetic relationships.

Planta

January 2025

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.

New insights into the phylogeny of species in the family Thymelaeaceae and support of the recognition of D. genkwa and D. aurantiaca as species in the genus Wikstroemia are provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!