[Changes in photosynthetic capacity during leaf senescence of Liquidambar formosana].

Ying Yong Sheng Tai Xue Bao

College of Resource and Environment Science, Hunan Normal University, Changsha 410081, China.

Published: October 2016

AI Article Synopsis

  • This study analyzed the photosynthetic performance of Liquidambar formosana leaves during their senescence from October to December 2014.
  • Findings revealed a gradual decline in the net photosynthetic rate, from 2.88 μmol CO·m·s when leaves turned yellow to 0.95 μmol CO·m·s by early December.
  • Both the Ye model and the conventional model effectively described this decline in photosynthetic capacity, with the Ye model showing slightly better results, emphasizing the persistent positive net photosynthesis rates even in senescing leaves.

Article Abstract

In this study, the photosynthetic light response curves were measured for Liquidambar formosana during the leaf senescence from October to December in 2014. The measurements were simulated by a photosynthetic light response model (Ye model) and the conventional non-rectangular hyperbola model, in order to understand the photosynthetic capacity of senescing leaves of L. formosana. The results showed that the light sensitivity of the net photosynthetic rate decreased gra-dually during the leaf senescence. The measured maximum net photosynthetic rate was about 2.88 μmol CO·m·s when the leaf color just turned yellow, and dropped to 0.95 μmol CO·m·s in the later stage of leaf senescence (8th December). The two photosynthetic light-response models performed well in fitting the observation data, with Ye model being slightly better. Parameters estimated from the two models, such as the maximum net photosynthetic rate, the appa-rent quantum yield, the quantum yield at the light compensation point and the dark respiration rate, all gradually decreased with time, quantitatively describing the decrease in the photosynthetic capacity during the leaf senescence for L. formosana. The senescing leaves of L. formosana maintained positive net photosynthesis rates during the whole senescence, which had positive impact on carbon assimilation in the study area.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201610.008DOI Listing

Publication Analysis

Top Keywords

leaf senescence
20
photosynthetic capacity
12
net photosynthetic
12
photosynthetic rate
12
capacity leaf
8
photosynthetic
8
photosynthetic light
8
light response
8
senescing leaves
8
leaves formosana
8

Similar Publications

Combined Impacts of Climate and Tree Physiology on Mercury Accumulation in Tropical and Subtropical Foliage and Robust Model Parametrization.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.

Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.

View Article and Find Full Text PDF

Abscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.

View Article and Find Full Text PDF

Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.

View Article and Find Full Text PDF

Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.

View Article and Find Full Text PDF

Multi Characteristic Analysis of Vascular Cambium Cells in Reveals Its Anti-Aging Strategy.

Plants (Basel)

December 2024

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.

All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!