Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a rising trend in general. During the period of 2014-2094, the total aboveground biomass under RCP2.6, RCP4.5 and RCP8.5 scenarios increased by 68.2%, 79.3% and 72.6%, respectively. The total aboveground biomass under various climatic scenarios sort as: RCP4.5>RCP8.5>RCP2.6. We thought that an appropriate temperature might be beneficial to the biomass accumulation in this study area. However, overextended temperature might hinder the sustainable development of forest production and ecological function.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201610.011DOI Listing

Publication Analysis

Top Keywords

climate change
28
broadleaved forest>artificial
24
aboveground biomass
20
forest
17
natural broadleaved
16
coniferous forest
16
forest ecosystem
12
forest types
12
forest>artificial broadleaved
12
broadleaved forest
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!