The pecan nut [Carya illinoinensis (Wangenh) C. Koch] is a natural source of polyphenols with antioxidant properties. In this study, the encapsulation of aqueous and hydroalcoholic extracts of pecan nut shell were evaluated for the release of bioactive compounds and antioxidant potential in order to explore food applications using zein as encapsulating agent. The extracts showed high contents of total phenolics, condensed tannins and high antioxidant activity. Concentrations of proanthocyanidins were 9-fold higher in hydroalcoholic extracts. The LC-DAD analysis showed that catechins were the major phenolic compounds in samples, with epigallocatechin levels up to 138.62 mg mL. Zein microparticles loaded with aqueous extract released 2.3 times more phenolic compounds than the hydroalcoholic extracts and the DSC thermograms showed that extracts of pecan nut shell remained thermally stable up to 240 °C. The zein microcapsules obtained in this study were efficiently encapsulated and represent an interesting additive due its high antioxidant capacity, physicochemical characteristics and morphology. The use of zein microparticles combined with natural extracts constitute a step forward in the improvement of current technology for delivering phenolic compounds with applications in functional foods and nutraceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11130-018-0667-0DOI Listing

Publication Analysis

Top Keywords

pecan nut
16
nut shell
12
zein microparticles
12
hydroalcoholic extracts
12
phenolic compounds
12
[carya illinoinensis
8
illinoinensis wangenh
8
wangenh koch]
8
extracts pecan
8
high antioxidant
8

Similar Publications

First report of subsp. infecting southern shagbark hickory () in Georgia, USA.

Plant Dis

January 2025

USDA Agricultural Research Service, 9611 S. Riverbend Ave, Parlier, District of Columbia, United States, 93648;

Southern shagbark hickory (Carya carolinae-septentrionalis) is one of several deciduous trees in the family Juglandaceae and genus Carya that are native to North America. Southern shagbark hickory has a restricted distribution to the Southeast U.S.

View Article and Find Full Text PDF

Physiological mechanisms of Carya illinoensis tolerance to manganese stress.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.

View Article and Find Full Text PDF

Lipidomics and spatial metabolomics reveal the heterogeneity in lipid distribution within pecan kernels.

Food Chem

December 2024

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China; Eastern Institute of Technology, Ningbo 315100, China. Electronic address:

Pecan (Carya illinoinensis) is a globally important nut crop, yet the processes of lipid biosynthesis and spatial lipid distribution within its embryo remain poorly understood. This study employed UHPLC-MS/MS and MALDI-MSI to profile lipids in developing pecan embryos, identifying 401 lipid molecules, including a high abundance of glycerolipids (148) and glycerophospholipids (144). Differential diacylglycerols showed gradual uptrends, highlighting their role in synthesizing glycerolipids and glycerophospholipids.

View Article and Find Full Text PDF

This article presents a comprehensive overview of upcycling commercial nut byproducts (such as Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value.

View Article and Find Full Text PDF
Article Synopsis
  • - Pecan scab, caused by Venturia effusa, severely impacts pecan crops in the southeastern U.S., with resistance influenced by host genetics interacting with different disease forms.
  • - A transcriptome analysis of the 'Desirable' pecan cultivar revealed distinct gene expression patterns when exposed to both pathogenic and non-pathogenic scab isolates, particularly highlighting early defense mechanisms.
  • - The study identified key gene modules linked to defense responses, suggesting that the early activation of signal transduction and barrier formation are critical for resistance against the fungus, laying the groundwork for future resistance gene research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!