Method for electrochemical determination of L-tyrosine with screen-printed electrodes (SPE) modified with multi-walled CNT or CNT/TiO as sensing elements was used for the electroanalysis of L-tyrosine (Tyr). It was demonstrated that SPE/CNT and SPE/CNT/TiO exhibited high electrocatalytic activity and good analytical performance towards oxidation of L-tyrosine. The linear range of Tyr in human serum was 0.025 ÷ 1 mM with the correlation coefficient R = 0.97. Direct electrochemistry (without any mediator) of co-factor-free bovine serum albumin (BSA) and human serum albumin (HSA) was investigated by use of modified electrodes. Protein-ligand interactions based on the electrocatalytic oxidation of L-tyrosine during HSA interaction with hemin were analyzed by the change of peak height and oxidation peak area, corresponding to tyrosine oxidation accessibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-018-2557-z | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
Due to its exceptional electronic properties and catalytic activity, MoC has garnered significant attention for its application in electrocatalysis, particularly for the hydrogen evolution reaction (HER). However, several critical challenges continue to impede its widespread use, especially under strongly alkaline conditions. A primary obstacle is the enhancement of its intrinsic activity through further modification strategies, which remains a key limitation for its broader utilization.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species 2024SSY04093, College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
A convenient method is proposed using a heat-treatable volatile template to prepare hierarchical porous biochar (HPB). Litsea cubeba leaves and ZIF-8 served as carbon source and volatile hard template, respectively. The good compatibility between ZIF-8 and biomass facilitated their uniform dispersion, and the thermal decomposition of ZIF-8 created abundant pores in the HPB.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.
RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!