The exceptionally complex exine of Echinops, representing a significant investment of energy, develops from an elaborate glycocalyx which establishes, by self-assembly, a multi-layered system of micelles upon which sporopollenin polymerizes. We report on pollen development in two species of Echinops (Asteraceae, Cynareae) studied using transmission and scanning electron microscopy with an emphasis on the organisation and development of the massive sporoderm (maximum thickness 18 μm). The major events of exine deposition during the tetrad stage follow the now familiar sequence of self-assembling micellar mesophases and the subsequent incorporation of sporopollenin, observed here as: (1) spherical units with light cores; (2) columns of spherical units with dark cores; (3) large branched macromolecules arranged in a dendritic, three-dimensional network of long alveoli; and (4) alveoli with electron-transparent cores and dense walls. Later, (5) the primexine exhibits an elongated-alveolate pattern in which the alveoli have electron-dense cores and lighter exteriors. When (6) the thick inner columellae make contact with the outer primexine, sporopollenin accumulation in the cores of the primexine alveolae establishes continuity between the inner and outer columellae. In the free microspore stage, (7) the foot layer and first lamellae of the endexine appear (8). The endexine lamellae then increase in number and massive accumulation of sporopollenin occurs on all exine elements, making individual elements such as tectal spines, more pronounced. These and earlier findings, as well as experimental simulations of exine development, show that pollen wall morphogenesis involves a subtle interplay of gene-driven biological processes and physico-chemical factors offering abundant opportunities for the generation of complex, taxon-specific patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-018-2902-1 | DOI Listing |
Plant Mol Biol
January 2025
Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China.
The accurate callose deposition plays important roles in pollen wall formation and pollen fertility. As a direct target of miRNA160, ARF17 participate in the formation of the callose wall. However, the impact of ARF17 misexpression in microsporocytes on callose wall formation and pollen fertility remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:
The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.
View Article and Find Full Text PDFNat Commun
December 2024
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.
View Article and Find Full Text PDFMicrosc Res Tech
November 2024
Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
Int J Mol Sci
November 2024
Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China.
Ogura cytoplasmic male sterility (CMS) lines play a crucial role in the utilization of heterosis. However, valuable traits, such as disease resistance genes from Ogura CMS hybrids, are challenging to incorporate for germplasm innovation, particularly in cabbage and broccoli. To date, the -mediated network regulating fertility restoration remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!