In the present study we aimed to evaluate the potential of in vivo inhibition of miR-486 and miR-92a to reverse hyperlipidemia, then to identify and validate their lipid metabolism-related target genes. Male Golden-Syrian hamsters fed a hyperlipidemic (HL) diet (standard chow plus 3% cholesterol and 15% butter, 10 weeks) were injected subcutaneously with lock-nucleic acid inhibitors for either miR-486 or miR-92a. Lipids and miRNAs levels in liver and plasma, and hepatic expression of miRNAs target genes were assessed in all HL hamsters. MiR-486 and miR-92a target genes were identified by miRWalk analysis and validated by 3'UTR cloning in pmirGLO vectors. HL hamsters had increased liver (2.8-fold) and plasma (twofold) miR-486 levels, and increased miR-92a (2.8-fold and 1.8-fold, respectively) compared to normolipidemic hamsters. After 2 weeks treatment, liver and plasma cholesterol levels decreased (23 and 17.5% for anti-miR-486, 16 and 22% for miR-92a inhibition). Hepatic triglycerides and non-esterified fatty acids content decreased also significantly. Bioinformatics analysis and 3'UTR cloning in pmirGLO vector showed that sterol O-acyltransferase-2 (SOAT2) and sterol-regulatory element binding transcription factor-1 (SREBF1) are targeted by miR-486, while ATP-binding cassette G4 (ABCG4) and Niemann-Pick C1 (NPC1) by miR-92a. In HL livers and in cultured HepG2 cells, miR-486 inhibition restored the levels of SOAT2 and SREBF1 expression, while anti-miR-92a restored ABCG4, NPC1 and SOAT2 expression compared to scrambled-treated HL hamsters or cultured cells. In vivo inhibition of miR-486 and miR-92a could be a useful and valuable new approach to correct lipid metabolism dysregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-018-4186-8 | DOI Listing |
J Nanobiotechnology
May 2024
Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China.
Background: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11.
View Article and Find Full Text PDFFront Mol Neurosci
October 2023
Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
Introduction: Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters.
Methods: We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes.
Int J Mol Sci
June 2023
11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
The status of predictive biomarkers in metastatic colorectal cancer is currently underdeveloped. Our study aimed to investigate the predictive value of six circulating exosomal miRNAs derived from plasma (miR-92a-3p, miR-143-3p, miR-146a-5p, miR-221-3p, miR-484, and miR-486-5p) for chemosensitivity, resistance patterns, and survival. Thirty-one metastatic colorectal cancer patients were selected before receiving first-line irinotecan- or oxaliplatin-based chemotherapy.
View Article and Find Full Text PDFFront Vet Sci
May 2023
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Introduction: Non-infectious inflammatory diseases of the central nervous system in dogs, such as steroid responsive meningitis-arteritis (SRMA) and meningoencephalitis of unknown origin (MUO), represent a common clinical challenge that needs extensive and multimodal work-up to reach a presumptive diagnosis. Both diseases are presumably caused by dysregulations of the immune system, but further research is needed in order to understand the molecular mechanisms behind each disease and to optimize treatment.
Methods: By next-generation sequencing and subsequent quantitative real-time PCR (qPCR) verification, we designed a prospective case-control pilot study to analyze the small RNA profiles of cerebrospinal fluid from dogs suffering from MUO ( = 5), dogs suffering from SRMA ( = 8), and healthy dogs ( = 5) presented for elective euthanasia used as the Control group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!