Tuberculosis (TB) is one of the deadliest infectious diseases worldwide. In , changes in gene expression are highly variable and involve many genes, so traditional single-gene screening of targets has been unable to meet the needs of clinical diagnosis. In this study, using the National Center for Biotechnology Information (NCBI) GEO Datasets, whole blood gene expression profile data were obtained in patients with active pulmonary tuberculosis. Linear model-experience Bayesian statistics using the Limma package in R combined with -tests were applied for nonspecific filtration of the expression profile data, and the differentially expressed human genes were determined. Using DAVID and KEGG, the functional analysis of differentially expressed genes (GO analysis) and the analysis of signaling pathways were performed. Based on the differentially expressed gene, the transcriptional regulatory element databases (TRED) were integrated to construct the pathogenic gene regulatory network, and the correlation of the network genes with disease was analyzed with the DAVID online annotation tool. It was predicted that IL-6, JUN, and TP53, along with transcription factors SRC, TNF, and MAPK14, could regulate the immune response, with their function being extracellular region activity and protein binding during infection with .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872665 | PMC |
http://dx.doi.org/10.1155/2018/3079730 | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFEpigenetics
December 2025
Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!