The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes.

Nat Plants

Biology Department, Brookhaven National Laboratory, Upton, NY, USA.

Published: May 2018

Lignin is a complex and irregular biopolymer of crosslinked phenylpropanoid units in plant secondary cell walls. Its biosynthesis requires three endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, C4H, C3'H and F5H, to establish the structural characteristics of its monomeric precursors. These P450 enzymes were reported to associate with each other or potentially with other soluble monolignol biosynthetic enzymes to form an enzyme complex or a metabolon. However, the molecular basis governing such enzyme or pathway organization remains elusive. Here, we show that Arabidopsis membrane steroid-binding proteins (MSBPs) serve as a scaffold to physically organize monolignol P450 monooxygenases, thereby regulating the lignin biosynthetic process. We find that although C4H, C3'H and F5H are in spatial proximity to each other on the ER membrane in vivo, they do not appear to directly interact with each other. Instead, two MSBP proteins physically interact with all three P450 enzymes and, moreover, MSBPs themselves associate as homomers and heteromers on the ER membrane, thereby organizing P450 clusters. Downregulation of MSBP genes does not affect the transcription levels of monolignol biosynthetic P450 genes but substantially impairs the stability and activity of the MSBP-interacting P450 enzymes and, consequently, lignin deposition, and the accumulation of soluble phenolics in the monolignol branch but not in the flavonoid pathway. Our study suggests that MSBP proteins are essential structural components in the ER membrane that physically organize and stabilize the monolignol biosynthetic P450 enzyme complex, thereby specifically controlling phenylpropanoid-monolignol branch biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-018-0142-9DOI Listing

Publication Analysis

Top Keywords

p450 enzymes
16
monolignol biosynthetic
12
p450
9
lignin biosynthetic
8
cytochrome p450
8
p450 monooxygenases
8
c4h c3'h
8
c3'h f5h
8
enzyme complex
8
physically organize
8

Similar Publications

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Background: Polyunsaturated fatty acids are metabolized by cytochrome P450 (CYP450) into anti-inflammatory, pro-resolving epoxides, which are rapidly converted to inactive and cytotoxic diols by soluble epoxide hydrolase (sEH). Increased CYP450-sEH metabolites are associated with worse cognition in type 2 diabetes mellitus (T2DM), and greater white matter hyperintensities (WMH) in patients with stroke. We examined whether the relationship between linoleic acid (LA)-derived CYP450-sEH metabolites (oxylipins) and small vessel disease (SVD) markers differ across diabetes status.

View Article and Find Full Text PDF

Background: Aging and the decline in sex steroid hormone (e.g., estrogen) are associated with a potential loss of its neuroprotective effects on the female brain.

View Article and Find Full Text PDF

Background: Alzheimer's Disease ("AD") presents a significant global health burden, often requiring medication management of comorbidities, some of which are metabolized by the polymorphic enzyme CYP2C9. We investigated the impact of CYP2C9 polymorphism on the reduction of Neuropsychiatric Inventory (NPI-12) scores following administration of IGC-AD1, comprising THC and melatonin, in AD patients.

Method: Thirteen Puerto Rican AD patients (mean age: 80.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) affects millions of Americans, with potential future increases without breakthroughs in treatment. IGC-AD1, a novel formulation comprising of delta-9 tetrahydrocannabinol ("THC") and melatonin, is being studied in AD-associated agitation. THC is predominantly metabolized by cytochrome P450 and specifically by CYP2C9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!