Adaptive laboratory evolution is an important tool to evolve organisms to increased tolerance towards different physical and chemical stress. It is applied to study the evolution of antibiotic resistance as well as genetic mechanisms underlying improvements in production strains. Adaptive evolution experiments can be automated in a high-throughput fashion. However, the characterization of the resulting lineages can become a time consuming task, when the performance of each lineage is evaluated individually. Here, we present a novel method for the markerless insertion of randomized genetic barcodes into the genome of Escherichia coli using a novel dual-auxotrophic selection approach. The barcoded E. coli library allows multiplexed phenotyping of evolved strains in pooled competition experiments. We use the barcoded library in an adaptive evolution experiment; evolving resistance towards three common antibiotics. Comparing this multiplexed phenotyping with conventional susceptibility testing and growth-rate measurements we can show a significant positive correlation between the two approaches. Use of barcoded bacterial strain libraries for individual adaptive evolution experiments drastically reduces the workload of characterizing the resulting phenotypes and enables prioritization of lineages for in-depth characterization. In addition, barcoded clones open up new ways to profile community dynamics or to track lineages in vivo or situ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934437 | PMC |
http://dx.doi.org/10.1038/s41598-018-25201-5 | DOI Listing |
Nat Commun
December 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA.
Relations among territoriality, abundance and habitat suitability are fundamental to the ecology of many animal populations. Theory suggests two classes of possible responses to increasing abundance in territorial species: (1) the ideal free distribution (IFD), which predicts smaller territory sizes and decreased fitness as individuals adaptively pack into suitable habitats, and (2) the ideal despotic distribution (IDD), which predicts stable territory sizes and fitness in preferred habitats for dominant individuals and increased use of marginal habitats, reduced fitness and changes in territory sizes for subordinate individuals. We analysed the territory sizes and locations of seven migratory songbird species occupying a 10-ha plot in the Hubbard Brook Experimental Forest, New Hampshire, USA over a 52-year period.
View Article and Find Full Text PDFEcol Lett
December 2024
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!