The Weak Microcavity as an Enabler for Bright and Fault-tolerant Light-emitting Electrochemical Cells.

Sci Rep

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187, Umeå, Sweden.

Published: May 2018

The light-emitting electrochemical cell (LEC) is functional at substantial active-layer thickness, and is as such heralded for being fit for low-cost and fault-tolerant solution-based fabrication. We report here that this statement should be moderated, and that in order to obtain a strong luminous output, it is fundamentally important to fabricate LEC devices with a designed thickness of the active layer. By systematic experimentation and simulation, we demonstrate that weak optical microcavity effects are prominent in a common LEC system, and that the luminance and efficiency, as well as the emission color and the angular intensity, vary in a periodic manner with the active-layer thickness. Importantly, we demonstrate that high-performance light-emission can be attained from LEC devices with a significant active-layer thickness of 300 nm, which implies that low-cost solution-processed LECs are indeed a realistic option, provided that the device structure has been appropriately designed from an optical perspective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934366PMC
http://dx.doi.org/10.1038/s41598-018-25287-xDOI Listing

Publication Analysis

Top Keywords

active-layer thickness
12
light-emitting electrochemical
8
lec devices
8
weak microcavity
4
microcavity enabler
4
enabler bright
4
bright fault-tolerant
4
fault-tolerant light-emitting
4
electrochemical cells
4
cells light-emitting
4

Similar Publications

Organic photodetectors (OPDs) are key devices for monitoring vital signs, such as heart rate and blood oxygen level. For realizing the long-term measurement of biosignals, stable operation is essential. To improve the stability of OPDs, it is important to analyze each layer to understand the degradation mechanism.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells.

Adv Mater

January 2025

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.

The long exciton diffusion length (L) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited L hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system.

View Article and Find Full Text PDF

This study investigates the application of dielectric composite nanostructures (DCNs) to enhance both antireflection and absorption properties in thin film GaAs solar cells, which are crucial for reducing production costs and improving energy conversion efficiency in photovoltaic devices. Building upon previous experimental validations, this work systematically explores the underlying theoretical mechanisms using the finite difference time domain (FDTD) method to analyze the light interaction with the proposed DCNs. The results show that the combination of Mie resonance, Fabry-Perot resonance, and guided resonance, induced by the surface structuring of the DCNs, significantly enhances light absorption in the active layer, particularly at longer wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!