Chronic hepatitis B virus infection is a worldwide health problem with no current effective strategy to achieve a cure. The Hepatitis B virus (HBV) E antigen (HBeAg) has a negative effect on the immune system and a therapeutic vaccine is a promising strategy in order to treat chronic virus infection. In this study, we analyzed and identified the MHC-I, MHC-II and B cell epitopes of the HBeAg based on a B genotype sequence of HBV using a bioinformatic approach and in vitro experiments. The computational approach provided us with four epitopes (LLWFHISCL, YLVSFGVWI, MQLFHLCLI, TVLEYLVSF) of the specific MHC-I allele HLA-A0201 that conformed to all criteria. Molecular docking and a peptide binding assay showed that epitope TVLEYLVSF had the lowest binding energy and epitope LLWFHISCL had the highest binding affinity to the HLA-A0201 molecule. An interferonγenzyme-linked immunospot assay and cytotoxicity assay revealed that epitope LLWFHISCL had the highest ability to induce and stimulate T cells. Furthermore, we determined four core peptides of MHC-II epitopes and a region of the B cell epitope. The epitopes and region identified in this research may be helpful in designing epitope-based vaccines and boosting the mechanism research of HBeAg and its effect on the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellimm.2018.04.015DOI Listing

Publication Analysis

Top Keywords

hepatitis virus
12
based genotype
8
genotype sequence
8
virus infection
8
immune system
8
epitope llwfhiscl
8
llwfhiscl highest
8
epitopes region
8
analysis epitope-based
4
epitope-based vaccine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!