A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of oceanic Noctiluca blooms not associated with hypoxia in the Northeastern Arabian Sea. | LitMetric

AI Article Synopsis

  • Intense blooms of the dinoflagellate Noctiluca scintillans in the Northern Arabian Sea have been linked to fish die-offs, but they don’t produce toxins.
  • Recent studies attribute these blooms to the expansion of oxygen minimum zones caused by nutrient runoff from India’s coastal cities, yet the relationship between oxygen levels and bloom occurrences is unclear.
  • Satellite data, validated by shipboard observations, shows high accuracy in detecting both Noctiluca and diatom blooms, but findings suggest that climate change may be more responsible for changes in plankton composition than cultural eutrophication.

Article Abstract

Intense blooms of the heterotrophic dinoflagellate, green Noctiluca scintillans, have been reported annually in the Northern Arabian Sea since the early 2000s. Although not known to produce organic toxins, these blooms are still categorized as a harmful due to their association with massive fish mortalities. Recent work has attributed these blooms to the vertical expansion of the oxygen minimum zone, driven by cultural eutrophication from major coastal cities in western India. As diatoms are preferred prey of green Noctiluca scintillans, more frequent blooms of this mixotroph will likely impact the productivity of important fisheries in the region. The present study uses a satellite algorithm to determine the distribution of both diatom and green Noctiluca blooms in the Northeastern Arabian Sea from 2009 to 2016. The results from shipboard microscopy of phytoplankton community composition were used to validate the satellite estimates. The satellite algorithm showed 76% accuracy for detection of green Noctiluca and 92% for diatoms. Shipboard measurements and data from biogeochemical-Argo floats were used to assess the relationship between oxygen concentrations and green Noctiluca blooms in the Northeastern Arabian Sea. Regardless of the presence of a Noctiluca bloom, the dissolved oxygen in the photic zone was always >70% saturated, with an average oxygen saturation >90%. The variability in the relative abundance of diatoms and green Noctiluca is not correlated with changes in oxygen concentration. These findings provide no evidence that cultural eutrophication has contributed to the decadal scale shifts in plankton composition in the Northeastern Arabian Sea oceanic waters. Conversely, the climatic warming of surface waters would have intensified stratification, thereby reducing net nutrient flux to the photic zone and decreasing silicate to nitrate ratios (Si:N); both factors that could increase the competitive advantage of the mixotroph, green Noctiluca, over diatoms. If so, the decadal-scale trajectory of phytoplankton community composition in the Northeastern Arabian Sea may be a harbinger of future climate-driven change in other productive oceanic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2018.03.008DOI Listing

Publication Analysis

Top Keywords

green noctiluca
28
arabian sea
24
northeastern arabian
20
noctiluca blooms
12
noctiluca
9
noctiluca scintillans
8
cultural eutrophication
8
satellite algorithm
8
blooms northeastern
8
phytoplankton community
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!