Background: Plasmodium falciparum is the deadliest strain of malaria and the mortality rate is increasing because of pathogen drug resistance. Increasing knowledge of the parasite life cycle and mechanism of infection may provide new models for improved treatment paradigms. This study sought to investigate the paramagnetic nature of the parasite's haemozoin to inhibit parasite viability.
Results: Paramagnetic haemozoin crystals, a byproduct of the parasite's haemoglobin digestion, interact with a rotating magnetic field, which prevents their complete formation, causing the accumulation of free haem, which is lethal to the parasites. Plasmodium falciparum cultures of different stages of intraerythrocytic growth (rings, trophozoites, and schizonts) were exposed to a magnetic field of 0.46 T at frequencies of 0 Hz (static), 1, 5, and 10 Hz for 48 h. The numbers of parasites were counted over the course of one intraerythrocytic life cycle via flow cytometry. At 10 Hz the schizont life stage was most affected by the rotating magnetic fields (p = 0.0075) as compared to a static magnetic field of the same strength. Parasite growth in the presence of a static magnetic field appears to aid parasite growth.
Conclusions: Sequestration of the toxic haem resulting from haemoglobin digestion is key for the parasites' survival and the focus of almost all existing anti-malarial drugs. Understanding how the parasites create the haemozoin molecule and the disruption of its creation aids in the development of drugs to combat this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934852 | PMC |
http://dx.doi.org/10.1186/s12936-018-2333-2 | DOI Listing |
Periodontol 2000
January 2025
ADA Forsyth Institute, Cambridge, Massachusetts, USA.
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.
View Article and Find Full Text PDFSmall
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.
View Article and Find Full Text PDFFront Surg
January 2025
Department of Abdominal Transplant and Hepatopancreatobiliary Surgery, Nationwide Children's Hospital, Columbus, OH, United States.
Background: Prepancreatic postduodenal portal vein (PPPV) is a rare anatomic variant where the portal vein (PV) runs anterior to the pancreas and posterior to the duodenum. Only 20 cases of PPPV, all in adults, have been reported in literature. We report the first case of PPPV in a pediatric patient discovered intraoperatively during total pancreatectomy with islet autotransplantation (TPIAT) and the third known case in which the PPPV could be isolated intraoperatively.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy.
Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated.
View Article and Find Full Text PDFFront Neurosci
January 2025
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan City, China.
Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!