Background: Epilepsy is a major complication of stroke. We aimed to establish whether there is an association between intravenous thrombolysis, intra-arterial thrombolysis and post stroke seizure (PSS) development. Improved understanding of the relationship between reperfusion therapies and seizure development may improve post-stroke monitoring and follow-up.

Methods: This was a retrospective, multicentre cohort study conducted at the Royal Melbourne Hospital and Jingling Hospital Nanjing. We included patients with anterior circulation ischemic stroke admitted 2008-2015. Patients were divided into four treatment groups 1. IV-tPA only, 2. Intra-arterial therapies (IAT) only, 3. IAT + IV-tPA and 4. stroke unit care only (i.e. no IV-tPA or IAT). To assess the association between type of reperfusion treatment and seizure incidence we used multivariable logistic regression models adjusted for age, stroke severity, 3-month functional outcome and prognostic factors.

Results: There were 1375 stroke unit care-only patients, of whom 28 (2%) developed PSS. There were 363 patients who received only IV-tPA, of whom 21 (5.8%) developed PSS. There were 93 patients who received IAT only, of whom 12 (12.9%) developed PSS and 112 that received both IV-tPA + IAT, of which 5 (4.5%) developed PSS. All reperfusion treatments were associated with seizure development compared to stroke unit care-only patients: IV-tPA only adjusted odds ratio (aOR) 3.7, 95%CI 1.8-7.4, p < 0.0001; IAT aOR 5.5, 95%CI 2.1-14.3, p < 0.0001, IAT + IV-tPA aOR 3.4, 95% CI 0.98-11.8, p = 0.05. These aORs did not differ significantly between treatment groups (IV-tPA + IAT versus IV-tPA p = 0.89, IV-tPA + IAT versus IAT, p = 0.44).

Conclusions: Patients receiving thrombolytic or intra-arterial reperfusion therapies for acute ischemic stroke are at higher risk of epilepsy and may benefit from longer follow-up. No evidence for an additive or synergistic effect of treatment modality on seizure development was found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932812PMC
http://dx.doi.org/10.1186/s12883-018-1064-xDOI Listing

Publication Analysis

Top Keywords

developed pss
16
stroke unit
12
stroke
9
post stroke
8
seizure development
8
unit care-only
8
care-only patients
8
patients received
8
patients
6
pss
5

Similar Publications

Acceptor Elongation Boosted Intersystem Crossing Affords Efficient NIR Type-I and AIE-Active Photosensitizers for Targeting Ferroptosis-Based Cancer Therapy.

Adv Healthc Mater

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.

Photosensitizers (PSs) featuring type I reactive oxygen species (ROS) generation and aggregation-induced emission (AIE) activity offer a promising solution to achieve non-invasive and precise theranostics. However, the reported AIE luminogens (AIEgens) with both AIE characteristic and strong type-I ROS generation are still scarce and the structure-property relationship is still unclear. Herein, an innovative acceptor elongation boosted intersystem crossing (AEBIC) design strategy has been proposed to endow the AIEgen strong type-I ROS producibility.

View Article and Find Full Text PDF

Background: We developed the FORCE platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression.

View Article and Find Full Text PDF

Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing.

Biosens Bioelectron

January 2025

School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China. Electronic address:

Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate.

View Article and Find Full Text PDF

Introduction: Current care plans for stroke survivors typically focus on acute management, resulting in many stroke survivors being discharged to their communities without adequate follow-up, despite their often experiencing significant post-stroke complications, such as post-stroke spasticity (PSS). While studies have explored the incidence and prevalence of PSS, little is known about how early PSS develops and how many stroke survivors develop 'problematic' PSS that would benefit from pharmacological treatment.

Methods And Analysis: EPITOME is a prospective, international, observational, epidemiological study of participants (aged 18-90 years) who develop paresis within days 3-14 of a first-ever stroke that occurred within the past 4 weeks.

View Article and Find Full Text PDF

Background: Molecular-clinical prognostic models for Myelodysplastic syndromes (MDS) offer more accurate prognosis predictions, yet existing models often overlook the heterogeneity of mutational profiles against the cytogenetic background. Moreover, how to apply these models in regions where large panel NGS is unaffordable remains a significant challenge to be addressed.

Methods: A total of 237 NK MDS patients from our center were used as the training set to screen for key variables and develop a prognostic model with overall survival (OS) as the endpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!