Phosphorylation and dephosphorylation are the key mechanisms for mycobacterial physiology and play critical roles in mycobacterial survival and in its pathogenesis. Mycobacteria evade host immune mechanism by inhibiting phagosome - lysosome fusion in which mycobacterial protein tyrosine phosphatase A (PtpA;TP) plays an indispensable role. Tyrosine kinase (PtkA;TK) activated by autophosphorylation; phosphorylates TP, which subsequently leads to increase in its phosphatase activity. The phosphorylated TP is secreted in phagosome of macrophage. In the present study, we have shown that the phosphorylation at two sites of TP; Y and Y are critical for TK-mediated phosphatase activity. The disruption of this interaction between TK and TP inhibits activation of later which further leads to the decrease in intracellular survival of mycobacteria. Furthermore, the proof of concept has been established using benzylbenzofurans and benzofuranamides, which inhibit the growth and intracellular survival of mycobacteria, associate with the functional sites of TP and contend with the TK. This binding was further restated by looking at the anchorage of protein-protein and the protein-inhibitor complexes in the homology-based structure models and by surface plasmon resonance analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2018.1473407DOI Listing

Publication Analysis

Top Keywords

mycobacterial protein
8
protein tyrosine
8
tyrosine kinase
8
phosphatase activity
8
intracellular survival
8
survival mycobacteria
8
mycobacterial
4
tyrosine
4
kinase ptka
4
ptka phosphorylates
4

Similar Publications

In vitro susceptibility of 147 international clinical Mycobacterium abscessus isolates to epetraborole and comparators by broth microdilution.

J Antimicrob Chemother

December 2024

Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, CO, USA.

Background: Mycobacterium abscessus is a highly drug-resistant non-tuberculous mycobacterium (NTM) for which treatment is limited by the lack of active oral antimycobacterials and frequent adverse reactions. Epetraborole is a novel oral, boron-containing antimicrobial that inhibits bacterial leucyl-tRNA synthetase, an essential enzyme in protein synthesis, and has been shown to have anti-M. abscessus activity in preclinical studies.

View Article and Find Full Text PDF

Metformin improves infection by strengthening macrophage antimicrobial functions.

Front Immunol

December 2024

Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Introduction: The incidence and prevalence of infections with non-tuberculous mycobacteria such as (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection.

View Article and Find Full Text PDF

Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.

View Article and Find Full Text PDF

Introduction: Protein acetylation is an extensively investigated post-translational modification (PTM). In addition to lysine acetylation, three new types of lysine acylations characterized by the presence of an acidic carboxylic group have been recently identified and validated. These included lysine malonylation (Kmal), lysine succinylation (Ksucc) and lysine glutarylation (Kglu).

View Article and Find Full Text PDF

A conserved human CD4+ T cell subset recognizing the mycobacterial adjuvant, trehalose monomycolate.

J Clin Invest

December 2024

Department of Molecular Immunology, Research Institute for Microbial Diseas, Osaka University, Suita, Japan.

Mycobacterium tuberculosis causes human tuberculosis. As mycobacteria are protected by thick lipid cell wall, humans have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are known as adjuvants acting through innate immune receptors, such as C-type lectin receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!