Contamination of soil and water by waste from abandoned uranium mines has led to chronic exposures to metal mixtures in Native American communities. Our previous work demonstrated that community exposures to mine waste increase the likelihood of developing cardiovascular disease, as well as the likelihood of developing multiple chronic diseases including diabetes, hypertension and kidney disease. Exposure to various environmental metals is associated with elevated oxidative stress, which is considered a contributor to these and other chronic disease states. The purpose of the current research was to assess potential associations between exposure to uranium and arsenic and evidence for increased oxidative stress as measured by urinary F -isoprostanes in pregnant women enrolled in the Navajo Birth Cohort Study. The current study also included an analysis of zinc as a potential mediator of oxidative stress in the study population. Urinary arsenic and uranium, serum zinc and urinary F -isoprostanes were measured for each study participant at enrollment. Study participants were pregnant women with median age of 26.8; 18.9% were enrolled in the 1st trimester, 44.7% were enrolled in the 2nd trimester, and 36.4% were enrolled in the 3 trimester. Median urinary metal levels were 5.5 and 0.016 µg/g creatinine for arsenic and uranium, respectively. Multivariable regression analysis indicated a significant association between arsenic exposure and the lipid peroxidation product 8-iso-prostaglandin F controlling for zinc and trimester. No associations were detected with uranium despite evidence that levels were in the Navajo Birth Cohort samples were 2.3 times the median reported for women in the National Health and Nutrition Examination Survey (2011-12). Zinc was not found to have any causal mediation of the effects of the other metals on oxidative stress. The current work is consistent with other studies that have detected an association between arsenic and elevated oxidative stress. In contrast to arsenic, uranium did not appear to increase oxidative stress response in this study population. These findings are relevant to assessing the potential human impact of chronic exposure to mixed metal waste from abandoned uranium mines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381929 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.579 | DOI Listing |
Int J Rheum Dis
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Objective: Serum uric acid (SUA) may play positive roles in diseases associated with oxidative stress, such as osteoporosis (OP). Nevertheless, the specific impact of SUA levels on both bone mineral density (BMD) and the risk of OP remains uncertain. Considering such information crucial for clinicians when making decisions about urate-lowering therapy (ULT), we sought to fill this gap by conducting dose-response meta-analyses.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
School of Basic Medical Science, Jining Key Laboratory of Pharmacology, Jining Medical University, Jining, Shandong, China.
Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Introduction: The common duckweed () is a model organism for investigation of plant physiology, especially stress-related responses. Its two physiological characteristics are of special interest: (1) salt-stressed duckweeds may accumulate starch, a precursor for biofuel; (2) duckweeds are associated with various beneficial (plant-growth promoting, PGP) bacterial strains. In this paper, we analyzed the role of two bacterial strains: D1-104/3 and C31-106/3 in regulation of duckweed's growth and antioxidative responses to salt (10 and 100 mM NaCl) and hypothesized that they alleviate salt-induced oxidative stress.
View Article and Find Full Text PDFFront Public Health
January 2025
NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.
Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!