The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.preteyeres.2018.04.005 | DOI Listing |
Damage to the primary visual pathway can cause vision loss. Some cerebrally blind people retain degraded vision or sensations and can perform visually guided behaviors. These cases motivate investigation and debate on blind field conscious awareness and linked residual neural processing.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
Objective: This study assesses whether longitudinal quantitative pupillometry predicts neurological deterioration after large middle cerebral artery (MCA) stroke and determines how early changes are detectable.
Methods: This prospective, single-center observational cohort study included patients with large MCA stroke admitted to Boston Medical Center's intensive care unit (2019-2024). Associations between time-to-neurologic deterioration and quantitative pupillometry, including Neurological Pupil Index (NPi), were assessed using Cox proportional hazards models with time-dependent covariates adjusted for age, sex, and Alberta Stroke Program Early CT Score.
Transl Vis Sci Technol
January 2025
Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Purpose: Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation.
View Article and Find Full Text PDFPsychophysiology
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
The decline in noradrenergic (NE) locus coeruleus (LC) function in aging is thought to be implicated in episodic memory decline. Transcutaneous auricular vagus nerve stimulation (taVNS), which supports LC function, might serve to preserve or improve memory function in aging. However, taVNS effects are generally very heterogeneous, and it is currently unclear whether taVNS has an effect on memory.
View Article and Find Full Text PDFiScience
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.
Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!