The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions.

Prog Retin Eye Res

Division of Optometry & Visual Science City, University of London, Northampton Square, London, EC1V 0HB, United Kingdom. Electronic address:

Published: September 2018

The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.preteyeres.2018.04.005DOI Listing

Publication Analysis

Top Keywords

changes pupil
20
pupil area
16
pupil
9
changes
5
pupillary light
4
light responses
4
animals
4
responses animals
4
animals review
4
review distribution
4

Similar Publications

Damage to the primary visual pathway can cause vision loss. Some cerebrally blind people retain degraded vision or sensations and can perform visually guided behaviors. These cases motivate investigation and debate on blind field conscious awareness and linked residual neural processing.

View Article and Find Full Text PDF

Objective: This study assesses whether longitudinal quantitative pupillometry predicts neurological deterioration after large middle cerebral artery (MCA) stroke and determines how early changes are detectable.

Methods: This prospective, single-center observational cohort study included patients with large MCA stroke admitted to Boston Medical Center's intensive care unit (2019-2024). Associations between time-to-neurologic deterioration and quantitative pupillometry, including Neurological Pupil Index (NPi), were assessed using Cox proportional hazards models with time-dependent covariates adjusted for age, sex, and Alberta Stroke Program Early CT Score.

View Article and Find Full Text PDF

Purpose: Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation.

View Article and Find Full Text PDF

The decline in noradrenergic (NE) locus coeruleus (LC) function in aging is thought to be implicated in episodic memory decline. Transcutaneous auricular vagus nerve stimulation (taVNS), which supports LC function, might serve to preserve or improve memory function in aging. However, taVNS effects are generally very heterogeneous, and it is currently unclear whether taVNS has an effect on memory.

View Article and Find Full Text PDF

Microsaccade selectivity as discriminative feature for object decoding.

iScience

January 2025

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.

Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!