[Evaluation of the cardioprotective effect of ubiquinol on the model of reperfusion injury of rat myocardium].

Biomed Khim

JSC "Research-and-manufacturing company "HOME OF PHARMACY"", Leningradskaya reg., Russia.

Published: March 2018

The cardioprotective effect of ubiquinol on the model of myocardium reperfusion injury in rats was investigated. The study was carried out using mature males of outbred rats. Myocardial ischemia-reperfusion injury was performed after 30-minute ligation of the left coronary artery followed by reperfusion. The main criteria for assessing the development of pathology included the results of electrocardiography, biochemical analysis of blood plasma, histological and histochemical study of the myocardium. Development of the reperfusion damage of the myocardium caused specific changes in non-treated animals. The best therapeutic effect on biochemical indices was provided by a drug with the known cardioprotective activity - Mexidolâ and the tested object ubiquinol at doses of 2-6 mg/kg. Evaluation of the results of electrocardiography allowed to confirm the development of ischemic myocardial damage in all groups. The results of histochemical and histological examination of the myocardium suggest a high cardioprotective activity of ubiquinol at a dose of 3 mg/kg and a potential cardioprotective effect of ubiquinol in doses closest to the therapeutic doses of 2 and 6 mg/kg. Ubiquinol is a dose 9 mg/kg showed signs of prooxidant activity, manifested in the form of aggravation of reperfusion injury of the myocardium. The most effective in the conditions of experimental pathology is 1% solution of ubiquinol, at a dose of 3 mg/kg, whose cardioprotective effect is comparable or higher than that for the reference drug Mexidolâ at the therapeutic dose. In doses that are greater than therapeutic ubiquinol is able to act as a pro-oxidant.

Download full-text PDF

Source
http://dx.doi.org/10.18097/PBMC20186402188DOI Listing

Publication Analysis

Top Keywords

cardioprotective ubiquinol
12
reperfusion injury
12
ubiquinol dose
12
dose mg/kg
12
ubiquinol
8
ubiquinol model
8
cardioprotective activity
8
ubiquinol doses
8
reperfusion
5
cardioprotective
5

Similar Publications

Purpose: Lethal ventricular arrhythmias are a significant clinical concern following reperfusion therapies in elderly patients with myocardial infarction. The combination of multi-target therapies to achieve optimal anti-arrhythmogenesis and improve the chances of successful translation for patient benefit has prompted considerable interest. This study examined the anti-arrhythmic effect of nicotinamide mononucleotide (NMN)/ubiquinol combination treatment following myocardial ischemia/reperfusion (IR) injury in aged rats, with an emphasis on the role of oxidative stress and nitric oxide (NO).

View Article and Find Full Text PDF

Background: The metabolic and intracellular abnormalities in aging and diabetes cause loss of cardioprotection by routine interventions against myocardial ischemia/reperfusion (I/R) injury. We aimed to evaluate the possible interaction of aging and type-2 diabetes mellitus with cardioprotection and the potential protective effect of a mitochondrial cocktail (melatonin/nicotinamide mononucleotide (NMN)/ubiquinol) on myocardial I/R injury in aged diabetic rats.

Methods: Male Wistar rats (n = 108, 22-24 months old, 400-450 g) received high-fat diet/low dose of streptozotocin to induce type-2 diabetes, then were randomized into 9 groups of 12 rats each with/without I/R and/or melatonin, NMN, and ubiquinol, alone or in dual or triple combinations.

View Article and Find Full Text PDF

Ubiquinol-cytochrome c reductase core protein 1 contributes to cardiac tolerance to acute exhaustive exercise.

Exp Biol Med (Maywood)

January 2022

Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.

Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an indispensable component of mitochondrial complex III. It plays a key role in cardioprotection and maintaining mitochondrion function. However, the exact role of UQCRC1 in maintaining cardiac function has not been reported by models.

View Article and Find Full Text PDF

Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) plays a key role in influencing mitochondrial function. Increasing evidence supports that UQCRC1 overexpression takes part in cardioprotection. However, it remains unclear about the signaling pathway mediating the protective role of UQCRC1 overexpression.

View Article and Find Full Text PDF

Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat.

Cardiovasc Toxicol

June 2020

Laboratório de Toxicologia Veterinária, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

In the present study, we investigated the cardioprotective effects of coenzyme Q10 (Q10) against doxorubicin (DOXO) induced cardiomyopathy. Twenty adult rats were distributed in four experimental groups: group 1 received NaCl 0.9% at 1 ml/day for 14 days; group 2 received Q10 at 1 mg/kg/day for 14 days; group 3 received initial 7 days of treatment with NaCl 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!