A physiologically relevant environment is essential for successful long-term cell culturing in vitro. Precise control of temperature, one of the most crucial environmental parameters in cell cultures, increases the fidelity and repeatability of the experiments. Unfortunately, direct temperature measurement can interfere with the cultures or prevent imaging of the cells. Furthermore, the assessment of dynamic temperature variations in the cell culture area is challenging with the methods traditionally used for measuring temperature in cell culture systems. To overcome these challenges, we integrated a microscale cell culture environment together with live-cell imaging and a precise local temperature control that is based on an indirect measurement. The control method uses a remote temperature measurement and a mathematical model for estimating temperature at the desired area. The system maintained the temperature at 37±0.3 °C for more than 4 days. We also showed that the system precisely controls the culture temperature during temperature transients and compensates for the disturbance when changing the cell cultivation medium, and presented the portability of the heating system. Finally, we demonstrated a successful long-term culturing of human induced stem cell-derived beating cardiomyocytes, and analyzed their beating rates at different temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/2472630318768710 | DOI Listing |
Viruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.
During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFViruses
December 2024
Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins.
View Article and Find Full Text PDFViruses
November 2024
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.
View Article and Find Full Text PDFViruses
November 2024
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!