A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Constructing a ZnInS nanoparticle/MoS-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H production. | LitMetric

Constructing a ZnInS nanoparticle/MoS-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H production.

Dalton Trans

National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng 475004, China.

Published: May 2018

A zero-dimensional (0D)/two-dimensional (2D) heterojunction has an excellent advantage of boosting the photo-generated carrier separation and obtaining enhanced photocatalytic activities. Here, a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction was prepared by a rapid and low temperature hydrothermal method. TEM characterization results reveal that ZnIn2S4 nanoparticles are uniformly dispersed on the surface of MoS2-RGO nanosheets, which can provide abundant active sites and shorten the charge-migration distance, while the MoS2-RGO nanosheet acts as a support to avoid the aggregation of 0D ZnIn2S4 nanoparticles and also serves as a low-cost cocatalyst for effective hydrogen evolution. Through optimizing the MoS2-RGO composition and content, the highest hydrogen evolution rate of 425.1 μmol g-1 h-1 was obtained over the ZnIn2S4/MoS2-RGO 0D/2D heterojunction photocatalyst under visible light irradiation (λ > 420 nm), which is about 34.6 times higher than that of pure ZnIn2S4. Efficient charge separation can be attributed to the significantly enhanced photocatalytic performance, which originates from the favorable properties of the ZnIn2S4/MoS2-RGO 0D/2D heterojunction. This study provides an effective method to improve the photocatalytic performance of the ZnIn2S4 photocatalyst based on the 0D/2D heterojunction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt00946eDOI Listing

Publication Analysis

Top Keywords

0d/2d heterojunction
20
nanosheet 0d/2d
8
enhanced photocatalytic
8
znin2s4 nanoparticles
8
hydrogen evolution
8
znin2s4/mos2-rgo 0d/2d
8
photocatalytic performance
8
heterojunction
6
0d/2d
5
znin2s4
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!