Recently, the increasing number of bio-safety assessments on cadmium-containing quantum dots (QDs) suggested that they could lead to detrimental effects on the central nervous system (CNS) of living organisms, but the underlying action mechanisms are still rarely reported. In this study, whole-transcriptome sequencing was performed to analyze the changes in genome-wide gene expression pattern of rat hippocampus after treatments of cadmium telluride (CdTe) QDs with two sizes to understand better the mechanisms of CdTe QDs causing toxic effects in the CNS. We identified 2095 differentially expressed genes (DEGs). Fifty-five DEGs were between the control and 2.2 nm CdTe QDs, 1180 were between the control and 3.5 nm CdTe QDs and 860 were between the two kinds of CdTe QDs. It seemed that the 3.5 nm CdTe QD exposure might elicit severe effects in the rat hippocampus than 2.2 nm CdTe QDs at the transcriptome level. After bioinformatics analysis, we found that most DEG-enriched Gene Ontology subcategories and Kyoto Encyclopedia of Genes and Genomes pathways were related with the immune system process. For example, the Gene Ontology subcategories included immune response, inflammatory response and T-cell proliferation; Kyoto Encyclopedia of Genes and Genomes pathways included NOD/Toll-like receptor signaling pathway, nuclear factor-κB signaling pathway, tumor necrosis factor signaling pathway, natural killer cell-mediated cytotoxicity and T/B-cell receptor signaling pathway. The traditional toxicological examinations confirmed the systemic immune response and CNS inflammation in rats exposed to CdTe QDs. This transcriptome analysis not only revealed the probably molecular mechanisms of CdTe QDs causing neurotoxicity, but also provided references for the further related studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.3629 | DOI Listing |
Heliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China.
DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmacy, Binzhou Medical University, Yantai, 264003, China. Electronic address:
Ciprofloxacin (CIP) is a commonly used antibiotic, but its abuse may cause bacterial resistance, posing a high risk to the environment and human health. Herein, based on the molecular imprinting technology, this study proposed a ratiometric fluorescence sensor employing the "post-doping" strategy, which aims to be rapid, selective, and visually easy-to-use for CIP detection to address antibiotic residues and environmental risks. Specifically, by exploiting the "antenna effect" of lanthanide metal ions (Ln), terbium (III) (Tb) chosen as a fluorescence-assisted functional monomer as well as the red emitting CdTe quantum dots (QDs) as the internal reference signal were introduced into multi-emission Tb-CdTe@SiO@MIPs (TbMIPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!