The C9H11 potential energy surface (PES) was experimentally and theoretically explored because it is a relatively simple, prototypical alkylaromatic radical system. Although the C9H11 PES has already been extensively studied both experimentally (under single-collision and thermal conditions) and theoretically, new insights were made in this work by taking a new experimental approach: flash photolysis combined with time-resolved molecular beam mass spectrometry (MBMS) and visible laser absorbance. The C9H11 PES was experimentally accessed by photolytic generation of the phenyl radical and subsequent reaction with excess propene (C6H5 + C3H6). The overall kinetics of C6H5 + C3H6 was measured using laser absorbance with high time-resolution from 300 to 700 K and was found to be in agreement with earlier measurements over a lower temperature range. Five major product channels of C6H5 + C3H6 were observed with MBMS at 600 and 700 K, four of which were expected: hydrogen (H)-abstraction (measured by the stable benzene, C6H6, product), methyl radical (CH3)-loss (styrene detected), H-loss (phenylpropene isomers detected) and radical adduct stabilization. The fifth, unexpected product observed was the benzyl radical, which was rationalized by the inclusion of a previously unreported pathway on the C9H11 PES: aromatic-catalysed 1,2-H-migration and subsequent resonance stabilized radical (RSR, benzyl radical in this case) formation. The current theoretical understanding of the C9H11 PES was supported (including the aromatic-catalyzed pathway) by quantitative comparisons between modelled and experimental MBMS results. At 700 K, the branching to styrene + CH3 was 2-4 times greater than that of any other product channel, while benzyl radical + C2H4 from the aromatic-catalyzed pathway accounted for ∼10% of the branching. Single-collision conditions were also simulated on the updated PES to explain why previous crossed molecular beam experiments did not see evidence of the aromatic-catalyzed pathway. This experimentally validated knowledge of the C9H11 PES was added to the database of the open-source Reaction Mechanism Generator (RMG), which was then used to generalize the findings on the C9H11 PES to a slightly more complicated alkylaromatic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp01159a | DOI Listing |
Phys Chem Chem Phys
May 2018
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The C9H11 potential energy surface (PES) was experimentally and theoretically explored because it is a relatively simple, prototypical alkylaromatic radical system. Although the C9H11 PES has already been extensively studied both experimentally (under single-collision and thermal conditions) and theoretically, new insights were made in this work by taking a new experimental approach: flash photolysis combined with time-resolved molecular beam mass spectrometry (MBMS) and visible laser absorbance. The C9H11 PES was experimentally accessed by photolytic generation of the phenyl radical and subsequent reaction with excess propene (C6H5 + C3H6).
View Article and Find Full Text PDFJ Phys Chem A
April 2012
Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
Ab initio G3(MP2,CC)//B3LYP/6-311G** calculations have been performed to investigate the potential energy surface (PES) and mechanism of the reaction of phenyl radical with propylene followed by kinetic RRKM-ME calculations of rate constants and product branching ratios at various temperatures and pressures. The reaction can proceed either by direct hydrogen abstraction producing benzene and three C(3)H(5) radicals [1-propenyl (CH(3)CHCH), 2-propenyl (CH(3)CCH(2)), and allyl (CH(2)CHCH(2))] or by addition of phenyl to the CH or CH(2) units of propylene followed by rearrangements on the C(9)H(11) PES producing nine different products after H or CH(3) losses. The H abstraction channels are found to be kinetically preferable at temperatures relevant to combustion and to contribute 55-75% to the total product yield in the 1000-2000 K temperature range, with the allyl radical being the major product (~45%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!