Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

Free Radic Res

a Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University, Xi'an , PR China.

Published: July 2018

Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise types of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2018.1471476DOI Listing

Publication Analysis

Top Keywords

dna damage
12
induced plasma
12
plasma
10
cold atmospheric-pressure
8
atmospheric-pressure plasma
8
dna-protein crosslinks
8
ros rns
8
rns generated
8
damage induced
8
biological plasma
8

Similar Publications

ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.

View Article and Find Full Text PDF

Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mechanisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Transcription- replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has systematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer.

View Article and Find Full Text PDF

The Role of SWI/SNF Complex in Bladder Cancer.

J Cell Mol Med

January 2025

Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.

View Article and Find Full Text PDF

Investigating the origins of the mutational signatures in cancer.

Nucleic Acids Res

January 2025

Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.

Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!