Complex multiple-component semiconductor photocatalysts can be constructed that display enhanced catalytic efficiency via multiple charge and energy transfer, mimicking photosystems in nature. In contrast, the efficiency of single-component semiconductor photocatalysts is usually limited due to the fast recombination of the photogenerated excitons. Here, we report the design of an asymmetric covalent triazine framework as an efficient organic single-component semiconductor photocatalyst. Four different molecular donor-acceptor domains are obtained within the network, leading to enhanced photogenerated charge separation via an intramolecular energy transfer cascade. The photocatalytic efficiency of the asymmetric covalent triazine framework is superior to that of its symmetric counterparts; this was demonstrated by the visible-light-driven formation of benzophosphole oxides from diphenylphosphine oxide and diphenylacetylene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201801112DOI Listing

Publication Analysis

Top Keywords

asymmetric covalent
12
covalent triazine
12
triazine framework
12
energy transfer
12
transfer cascade
8
semiconductor photocatalysts
8
single-component semiconductor
8
framework enhanced
4
enhanced visible-light
4
visible-light photoredox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!