Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification.

J Biol Inorg Chem

Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.

Published: July 2018

Vascular calcification is a prominent feature of many diseases including atherosclerotic cardiovascular disease (CVD), leading to high morbidity and mortality rates. A significant association of selenoprotein S (SelS) gene polymorphism with atherosclerotic CVD has been reported in epidemiologic studies, but the underlying mechanism is far from clear. To investigate the role of SelS in inflammation-induced vascular calcification, osteoblastic differentiation and calcification of vascular smooth muscle cells (VSMCs) induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α were compared between the cells with and without SelS knockdown. LPS or TNF-α induced osteoblastic differentiation and calcification of VSMCs, as showed by the increases of runt-related transcription factor 2 (Runx2) protein levels, Runx2 and type I collagen mRNA levels, alkaline phosphatase activity, and calcium deposition content. These changes were aggravated when SelS was knocked down by small interfering RNA. Moreover, LPS activated both classical and alternative pathways of nuclear factor-κB (NF-κB) signaling in calcifying VSMCs, which were further enhanced under SelS knockdown condition. SelS knockdown also exacerbated LPS-induced increases of proinflammatory cytokines TNF-α and interleukin-6 expression, as well as increases of endoplasmic reticulum (ER) stress markers glucose-regulated protein 78 and inositol-requiring enzyme 1α expression in calcifying VSMCs. In conclusion, the present study suggested that SelS might inhibit inflammation-induced VSMC calcification probably by suppressing activation of NF-κB signaling pathways and ER stress. Our findings provide new understanding of the role of SelS in vascular calcification, which will be potentially beneficial to the prevention of atherosclerotic CVD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00775-018-1563-7DOI Listing

Publication Analysis

Top Keywords

vascular calcification
12
sels knockdown
12
inflammation-induced vascular
8
vascular smooth
8
smooth muscle
8
calcification vascular
8
sels
8
atherosclerotic cvd
8
role sels
8
osteoblastic differentiation
8

Similar Publications

Background: The impact of moderate-to-vigorous physical activity (MVPA) on all-cause mortality in type 2 diabetes (T2D) patients with severe abdominal aortic calcification (SAAC) remains unclear.

Methods: We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014, including T2D patients aged 40 years and older. AAC was assessed using the Kauppila scoring system, with SAAC defined as a score >6.

View Article and Find Full Text PDF

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Background: Vascular disorders are proposed as modifiable risk factors for dementia; yet, physiologic mechanisms connecting vascular disorders to cognitive impairment remain unknown. We examined subclinical cardiovascular measures to determine which predict global cognitive decline and domain specific cognitive impairment and point to potential pathways linking subclinical vascular disease and dementia.

Methods: MESA includes a diverse cohort of 6,814 participants free from clinical cardiovascular disease with follow‐up over 6 clinical examinations and annual follow‐up calls.

View Article and Find Full Text PDF

Background: Vascular risk factors captured in midlife represent modifiable features of cardiovascular disease (CVD), stroke, dementia, and dementia‐related neuropathology. Subclinical measures of CVD may help identify specific structural and function aspects underlying vascular contributions to cognitive impairment and dementia over and above conventional dementia risk scores.

Method: The MESA study followed a diverse cohort of 6,814 adults aged 45‐84 years over 6 clinical examinations and annual follow‐up calls since baseline, 2000‐2002.

View Article and Find Full Text PDF

Background: The serum calcification propensity test (or T50 test) might become a standard tool for the assessment of vascular calcification risk and T50 might be a valuable biomarker in clinical trials of treatments intended to slow the progression of vascular calcification. Literature data suggest that non-calcium-containing phosphate binders can influence T50 in chronic dialysed patients. However, it is not clear whether similar interventions are effective in patients at earlier stages of chronic kidney disease (CKD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!