Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young's modulus toward a plateau value * along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the * for small microgels with ≤ 50 μm was 10-fold higher (35-39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920605PMC
http://dx.doi.org/10.1021/acscentsci.7b00625DOI Listing

Publication Analysis

Top Keywords

secondary structure
8
microsized lipid
8
lipid space
8
bulk gel
8
beta sheets
8
increasing elasticity
4
elasticity changes
4
changes secondary
4
structure gelatin
4
gelatin gelation
4

Similar Publications

Background: Virtual patients (VPs) are computer screen-based simulations of patient-clinician encounters. VP use is limited by cost and low scalability.

Objective: Show proof-of-concept that VPs powered by large language models (LLMs) generate authentic dialogs, accurate representations of patient preferences, and personalized feedback on clinical performance; and explore LLMs for rating dialog and feedback quality.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.

View Article and Find Full Text PDF

The primary weight-bearing structure of the proximal femur, trabecular bone, has a complex three-dimensional architecture that was previously difficult to comprehensively display. This study examined the spatial architecture of trabecular struts in the coronal, sagittal, and horizontal sections of the proximal femur using 21 cases prepared with P45 sectional plasticization. The primary compressive strut (PCS) exhibited a "mushroom-like" shape with upper and lower parts.

View Article and Find Full Text PDF

The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!