We detected a significant elevation of serum HSP90α levels in pancreatitis patients and even more in pancreatic ductal adenocarcinoma (PDAC) patients. However, there was no significant difference in the serum HSP90α levels between patients with early-stage and late-stage PDAC. To study whether elevation of serum HSP90α levels occurred early during PDAC development, we used LSL-KrasG12D/Pdx1-Cre transgenic mice as a studying model. Elevated serum HSP90α levels were detected before PDAC formation and an extracellular HSP90α (eHSP90α) inhibitor effectively prevented PDAC development. Both serum HSP90α level and pancreatic lesion were suppressed when the mice were administered a CD11b-antagonizing antibody, suggesting that CD11b-myeloid cells were associated with eHSP90α levels and pancreatic carcinogenesis. Consistently, in CD11b-DTR-EGFP transgenic mouse model with CD11b-myeloid cells depletion, serum HSP90α levels were suppressed and Panc-02 cell grafts failed to develop tumors. Macrophages and granulocytes are two common tissue-infiltrating CD11b-myeloid cells. Duplex hybridization assays suggested that macrophages were predominant HSP90α-expressing CD11b-myeloid cells during PDAC development. Immunohistochemical and immunohistofluorescent staining results revealed that HSP90α-expressing cells included not only macrophages but also pancreatic ductal epithelial (PDE) cells. Cell culture studies also indicated that eHSP90α could be produced by macrophages and macrophage-stimulated PDE cells. Macrophages not only secreted significant amount of HSP90α, but also secreted interleukin-6 and interleukin-8 to induce a JAK2-STAT3 signaling axis in PDE cells, stimulating them to express and secrete HSP90α. eHSP90α further promoted cellular epithelial-mesenchymal transition, migration, and invasion in PDE cells. Besides myeloid cells, eHSP90α can be potentially taken as a target to suppress PDAC pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927518PMC
http://dx.doi.org/10.1080/2162402X.2018.1424612DOI Listing

Publication Analysis

Top Keywords

serum hsp90α
24
hsp90α levels
20
cd11b-myeloid cells
16
pde cells
16
pancreatic ductal
12
pdac development
12
hsp90α
10
cells
10
macrophages secreted
8
ductal adenocarcinoma
8

Similar Publications

Molecular reprogramming of stromal microarchitecture by tumour-derived extracellular vesicles (EVs) is proposed to favour pre-metastatic niche formation. We elucidated the role of extravesicular tissue inhibitor of matrix metalloproteinase-1 (TIMP1) in pro-invasive extracellular matrix (ECM) remodelling of the liver microenvironment to aid tumour progression in colorectal cancer (CRC). Immunohistochemistry analysis revealed a high expression of stromal TIMP1 in the invasion front that was associated with poor progression-free survival in patients with colorectal liver metastases.

View Article and Find Full Text PDF

Cryopreservation of Senegalese sole sperm can represent an alternative to overcome some reproductive problems of this species. However, it is important to guarantee the safe use of cryopreserved sperm by selecting an appropriate protocol according to a high demand quality need to be ensured. It has been demonstrated that traditional assays such as motility and viability do not provide enough information to identify specific damage caused by cryopreservation process (freezing and thawing).

View Article and Find Full Text PDF

The 90-kDa chaperon family includes heat shock protein (hsp) 90 and glucose-regulated protein (grp) 94. These proteins play an important role in normal cellular architecture, in the etiology of some autoimmune and infectious diseases and in antigen presentation to T cells. Owing to its role in autoimmunity, we explored anti-hsp90 autoantibody (hsp90AA) response in the sera of persons with type 1 diabetes, first-degree relatives (FDR) and in normal subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!