Previous studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS) cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both and transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc), enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells. These osteoblast-derived iPS cells exhibited gene expression profiles akin to embryonic stem cells and were pluripotent as demonstrated by their ability to form teratomas comprising tissues from all germ layers and also contribute to tail tissue in chimera embryos. These data demonstrate that iPS cells can be generated from intramembranous osteoblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867603PMC
http://dx.doi.org/10.1155/2018/5280793DOI Listing

Publication Analysis

Top Keywords

ips cells
16
calvarial osteoblasts
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
demonstrated ability
8
cells
6
reprogramming mouse
4
mouse calvarial
4
osteoblasts
4

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

iPSC-derived human sensory neurons reveal a subset of TRPV1 antagonists as anti-pruritic compounds.

Sci Rep

December 2024

Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.

Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening.

View Article and Find Full Text PDF

Microglia-like cells from patient monocytes demonstrate increased phagocytic activity in probable Alzheimer's disease.

Mol Cell Neurosci

December 2024

Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.

View Article and Find Full Text PDF

Potent prophylactic cancer vaccines harnessing surface antigens shared by tumour cells and induced pluripotent stem cells.

Nat Biomed Eng

December 2024

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China.

The development of prophylactic cancer vaccines typically involves the selection of combinations of tumour-associated antigens, tumour-specific antigens and neoantigens. Here we show that membranes from induced pluripotent stem cells can serve as a tumour-antigen pool, and that a nanoparticle vaccine consisting of self-assembled commercial adjuvants wrapped by such membranes robustly stimulated innate immunity, evaded antigen-specific tolerance and activated B-cell and T-cell responses, which were mediated by epitopes from the abundant number of antigens shared between the membranes of tumour cells and pluripotent stem cells. In mice, the vaccine elicited systemic antitumour memory T-cell and B-cell responses as well as tumour-specific immune responses after a tumour challenge, and inhibited the progression of melanoma, colon cancer, breast cancer and post-operative lung metastases.

View Article and Find Full Text PDF

Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function.

NPJ Regen Med

December 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.

As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!