Secreted Nano-luciferase (secNluc) is a newly engineered secreted luciferase that possesses advantages of high structural stability, long half-life, and glow-type kinetics together with high light emission intensity, and thus would become one of the most valuable tools for bioluminescence assays. However, like other secreted luciferases, secNluc has to mix with the components in the conditioned medium surrounding test cells, or in the biological samples such as blood or urine after being secreted. These components may interfere with secNluc-catalyzed bioluminescence reactions and thus limit the application of the secNluc reporter system. In this study, we first examined the effects of three factors, pH, serum and residual reagents, on secNluc-catalyzed bioluminescence reactions, finding that these factors could interfere with bioluminescence reactions and result in background signal. To resolve these problems, we applied a simple affinity purification strategy in which secNluc was fused with a FLAG-tag, and anti-FLAG magnetic beads were used to catch and transfer the fusion protein to PBST, an optimal buffer for secNluc-catalyzed bioluminescence reactions that was identified in this study. The results indicated that this strategy could not only negate the interferences from serum or residual reagents and enhance the stability of light emission but also greatly increase signal intensity through enzyme enrichment. This strategy may contribute to biomedical studies that utilize secNluc and other secreted luciferases, especially those requiring superior sensitivity, low background noise and high reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931628 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196617 | PLOS |
Arch Biochem Biophys
January 2025
Department of Biochemistry and Center of Excellent in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand. Electronic address:
Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.
View Article and Find Full Text PDFTalanta
January 2025
Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, 565-0871, Japan; SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan. Electronic address:
Heavy metal contamination in water bodies has raised global concerns due to its significant threats to both public health and ecosystem. Copper (Cu), one of the most widely used metals, is also an essential trace element in physiological systems. Excessive intake of Cu from water can cause toxicity, potentially resulting in serious health risks.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .
View Article and Find Full Text PDFRedox Biochem Chem
December 2024
Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States.
Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.
View Article and Find Full Text PDFAs an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!