Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931502PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196801PLOS

Publication Analysis

Top Keywords

self-digitization chip
8
single-cell genotyping
8
single-cell
4
chip single-cell
4
genotyping cancer-related
4
cancer-related mutations
4
mutations cancer
4
cancer heterogeneous
4
heterogeneous disease
4
disease patient-level
4

Similar Publications

Single-cell analysis of cell phenotypic information such as surface protein expression and nucleic acid content is essential for understanding heterogeneity within cell populations. Here the design and use of a dielectrophoresis-assisted self-digitization (SD) microfluidics chip is described; it captures single cells in isolated microchambers with high efficiency for single-cell analysis. The self-digitization chip spontaneously partitions aqueous solution into microchambers through a combination of fluidic forces, interfacial tension, and channel geometry.

View Article and Find Full Text PDF

Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization.

ACS Appl Mater Interfaces

May 2022

Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China.

This paper proposes a simple and robust method for spontaneously digitizing aqueous samples into a high-density microwell array. The method is based on an oil-triggered template-confined dewetting phenomenon. To realize the dewetting-induced sample digitization, an aqueous sample is first infused into a networked microwell array (NMA) through a pre-degassing-based self-pumping mechanism, and an immiscible oil phase is then applied over the surface of NMA chip to induce the templated dewetting.

View Article and Find Full Text PDF

Digital nucleic acid quantitation methods show excellent sensitivity and specificity for pathogen detection. Droplet digital PCR (ddPCR) is the most advanced digital nucleic acid quantitation method and has been commercialized, but is not suitable for many point-of-care applications due to its complex instrumentation. Here we describe a simple microfluidics-based self-digitization (SD) chip for quantifying nucleic acids at the point of care with minimal instrumentation.

View Article and Find Full Text PDF

A facile and rapid route to self-digitization of samples into a high density microwell array for digital bioassays.

Talanta

October 2021

Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400044, China. Electronic address:

Digital bioassays are powerful methods to detect rare analytes from complex mixtures and study the temporal processes of individual entities within biological systems. In digital bioassays, a crucial first step is the discretization of samples into a large number of identical independent partitions. Here, we developed a rapid and facile sample partitioning method for versatile digital bioassays.

View Article and Find Full Text PDF

Cervical cancer is the fourth-leading cause of cancer deaths among women worldwide and most cases occur in developing countries. Detection of high-risk (HR) HPV, the etiologic agent of cervical cancer, is a primary screening method for cervical cancer. However, the current gold standard for HPV detection, real-time PCR, is expensive, time-consuming, and instrumentation-intensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!