Dissecting the role of MADS-box genes in monocot floral development and diversity.

J Exp Bot

School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.

Published: April 2018

Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ery086DOI Listing

Publication Analysis

Top Keywords

flower development
12
mads-box proteins
12
development diversity
8
mads-box
5
development
5
dissecting role
4
role mads-box
4
mads-box genes
4
genes monocot
4
monocot floral
4

Similar Publications

Edible flowers' flavor, safety and their utilization as functional ingredients: a review.

J Food Sci Technol

January 2025

Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India.

Edible flowers have been a part of various traditional dishes around the world. The consumption of edible flowers has been rising due to their nutritional properties, minerals, antioxidants, phenolic and bioactive compounds, therapeutic properties, and also aesthetic appeal. Along with the nutrients, some antinutrients and other chemical, biological, microbial hazards may render flowers non-edible.

View Article and Find Full Text PDF

We examined the risk of subsequent malignant neoplasms (SMNs) in 1720 patients with hematologic cancers given allogeneic hematopoietic grafts from 03/1998 to 08/2023 after nonmyeloablative conditioning regimens. With a median follow-up of 12 years, the cumulative incidence of SMNs was 17% (95% CI, [15%, 19%]). Most SMNs (n = 543) were non-melanoma skin cancers seen in 208 patients; unfortunately, information on these cancers was not available in the Surveillance, Epidemiology, and End Results (SEER) database for comparison with such tumors in the general population.

View Article and Find Full Text PDF

Rapid introgression of the clubroot resistance gene into cabbage skeleton inbred lines through marker assisted selection.

Mol Breed

February 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.

Unlabelled: Clubroot, caused by , is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the gene, crucial for CR.

View Article and Find Full Text PDF

Tartary buckwheat (Fagopyrum tataricum), a functional grain known for its medicinal and nutritional properties, has garnered significant attention due to its high flavonoid content and unique health benefits. Heat stress during the flowering stage can lead to sterility in Tartary buckwheat, resulting in reduced yields. This study investigates the effects of a treatment (30/27 °C for 7 days) on flower development, fertility, stress physiology, and gene expression in Tartary buckwheat, while also validating the efficacy of hormone treatments in alleviating the negative effects of heat stress.

View Article and Find Full Text PDF

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!