Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis.

Pathog Dis

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA.

Published: March 2018

Tuberculosis is a distinctive disease in which the causative agent, Mycobacterium tuberculosis, can persist in humans for decades by avoiding clearance from host immunity. During infection, M. tuberculosis maintains viability by extracting and utilizing essential nutrients from the host, and this is a prerequisite for all of the pathogenic activities that are deployed by the bacterium. In particular, M. tuberculosis preferentially acquires and metabolizes host-derived lipids (fatty acids and cholesterol), and the bacterium utilizes these substrates to cause and maintain disease. In this review, we discuss our current understanding of lipid utilization by M. tuberculosis, and we describe how these pathways promote pathogenesis to fuel metabolic processes in the bacillus. Finally, we highlight weaknesses in these pathways that potentially can be targeted for drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251666PMC
http://dx.doi.org/10.1093/femspd/fty021DOI Listing

Publication Analysis

Top Keywords

fatty acids
8
mycobacterium tuberculosis
8
tuberculosis
6
cholesterol fatty
4
acids grease
4
grease wheels
4
wheels mycobacterium
4
tuberculosis pathogenesis
4
pathogenesis tuberculosis
4
tuberculosis distinctive
4

Similar Publications

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).

View Article and Find Full Text PDF

Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.

Biol Trace Elem Res

January 2025

Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.

The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.

View Article and Find Full Text PDF

Pivotal roles of Plasmodium falciparum lysophospholipid acyltransferase 1 in cell cycle progression and cytostome internalization.

Commun Biol

January 2025

Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.

The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.

View Article and Find Full Text PDF

Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides.

Nat Commun

January 2025

Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.

Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.

View Article and Find Full Text PDF

Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!