Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061842PMC
http://dx.doi.org/10.1093/hmg/ddy162DOI Listing

Publication Analysis

Top Keywords

facioscapulohumeral dystrophy
8
skeletal muscle
8
fshd
8
dystrophy activating
4
activating early
4
early embryonic
4
embryonic transcriptional
4
transcriptional program
4
program human
4
human skeletal
4

Similar Publications

Background And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.

View Article and Find Full Text PDF

•FSHD1 may present with bilateral foot drop in adulthood.•Clinical examination, EMG and muscle MRI may additionally guide genetic testing.•Targeted genetic testing is crucial in atypical cases, particularly in light of new therapies.

View Article and Find Full Text PDF

The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression.

Int J Mol Sci

January 2025

Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.

DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.

View Article and Find Full Text PDF

A 44-year-old man with a history of facioscapulohumeral muscular dystrophy and pectus excavatum presented with multiyear history of progressive, severe respiratory dysfunction, pain, recurrent respiratory infection, and chest wall deformity. With bioprosthetic engineers, the surgical team customized a 3-dimensional printed model of a sternal implant interacting with the patient's anatomy. After approval from the Food and Drug Administration, the customized sternal plates were created and implanted in a sternal reconstruction operation.

View Article and Find Full Text PDF

Facioscapulohumeral dystrophy type 1 (FSHD1) displays prominent intra- and interfamilial variability, which complicates the phenotype-genotype correlation. In this retrospective study, we investigated FSHD1 patients classified as category D according to the Comprehensive Clinical Evaluation Form (CCEF), a category defined by FSHD patients showing uncommon clinical features, to identify genetic causes explaining these uncommon phenotypes. Demographics, clinical data and clinical scales of FSHD1 patients were retrospectively evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!