Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We performed morphometric analysis of five standardized coronal brain slices at anterior frontal (AF), caudate-putamen-accumbens (CAP), globus pallidus (GP), lateral geniculate nucleus (LGN), and parieto-occipital fissure (OCP) levels in 30 patients with Huntington's disease (HD) and 13 controls. Associated with the 30% mean reduction in brain weight in HD patients (p less than 0.001) were significantly smaller overall cross-sectional areas of brain at all five levels studied, with striking losses in cerebral cortex (21-29%), white matter (29-34%), caudate (57%), putamen (64%), and thalamus (28%) (all p less than 0.005). In addition, the ventricular system was dilated up to 2.5 times normal at CAP, GP, and LGN levels, 9.5 times normal at the OCP level, and 13 times normal at the AF level. Higher grades of severity of HD had greater reductions in the cross-sectional area of the caudate, putamen, thalamus, and cerebral cortex (p less than 0.005-0.001), and larger ventricles (p = 0.08) compared to lower (less severe) grades of HD. The findings confirm and quantitate the severe atrophy of the neostriatum, in addition to demonstrating a severe loss of cerebral cortex and subcortical white matter in HD. The global atrophy of cerebral cortex and white matter observed in all degrees of HD may account for the cognitive and neuropsychiatric impairments which often precede the onset of chorea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005072-198809000-00003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!