In spite of numerous advantageous properties of silicides, magnetic properties are not among them. Here, the magnetic properties of epitaxial binary silicide nanostructures are discussed. The vast majority of binary transition-metal silicides lack ferromagnetic order in their bulk-size crystals. Silicides based on rare-earth metals are usually weak ferromagnets or antiferromagnets, yet both groups tend to exhibit increased magnetic ordering in low-dimensional nanostructures, in particular at low temperatures. The origin of this surprising phenomenon lies in undercoordinated atoms at the nanostructure extremities, such as 2D (surfaces/interfaces), 1D (edges), and 0D (corners) boundaries. Uncompensated superspins of edge atoms increase the nanostructure magnetic shape anisotropy to the extent where it prevails over its magnetocrystalline counterpart, thus providing a plausible route toward the design of a magnetic response from nanostructure arrays in Si-based devices, such as bit-patterned magnetic recording media and spin injectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201800004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!