Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Irradiation of O2 dispersed in solid Ne with ultraviolet light produced infrared absorption lines of O3 and emission lines from atomic O (1D2 → 3P1,2), molecular O2 (A' 3Δu → X 3Σg) and radical OH (A 2Σ+ → X 2ΠI) in the visible and near-ultraviolet regions. The threshold wavelength for the formation of O3 was determined to be 200 ± 4 nm, corresponding to energy 6.20 ± 0.12 eV, which is hence the threshold for dissociation of O2. The thresholds of emission from excited O (1D2), O2 (A' 3Δu) and OH (A 2Σ+) were all observed to be 200 ± 4 nm, the same as for the formation of O3 in this photochemical system. The results indicate that, once O3 was generated, it was readily photolyzed to produce the long-lived atom O (1D2). Further reactions of O (1D2) with O3 produced excited O2 (A' 3Δu); reaction with water yielded radical OH (A 2Σ+). These results enhance our understanding of the evolution of the transformation of oxygen and open a window for the understanding of complicated processes in the solid phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp01375f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!