Calcium management differs in T and B lymphocytes. [Ca2+]i elevation in response to calcium ionophores is up to 10 times greater in T cells than B cells. There is no difference between them in ionophore uptake. T cells, but not B cells, possess a calcium-sensitive potassium channel which produces membrane hyperpolarization at [Ca2+]i above 200 nM. This alters T cell density providing a rapid and easy method of cell separation. In contrast, B cells depolarize when [Ca2+]i is increased. Isolated B cell membrane vesicle ATP-dependent calcium pump activity is higher than T cell vesicles. Membrane depolarization reduces the [Ca2+]i response to ionomycin, most dramatically in T cells because they are hyperpolarized by increased [Ca2+]i. The most likely basis of this behavior is an effect of membrane potential on lymphocyte membrane calcium pump activity. This mechanism provides an explanation of the inhibitory effect of membrane depolarization on T lymphocyte responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189033PMC
http://dx.doi.org/10.1084/jem.168.3.839DOI Listing

Publication Analysis

Top Keywords

calcium-sensitive potassium
8
potassium channel
8
membrane potential
8
cells cells
8
calcium pump
8
pump activity
8
membrane depolarization
8
membrane
7
calcium
6
cells
6

Similar Publications

Nitrous oxide (NO) induces rapid and durable antidepressant effects. The cellular and circuit mechanisms mediating this process are not known. Here we find that a single dose of inhaled NO induces rapid and specific activation of layer V (L5) pyramidal neurons in the cingulate cortex of rodents exposed to chronic stress conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a common form of dementia, with causes linked to mitochondrial issues, oxidative stress, and ion channel problems.
  • A rat study using 40 Hz flickering light therapy showed that this treatment improved cognitive function and countered biochemical changes caused by AD, like increased reactive oxygen species and amyloid beta buildup.
  • The therapy also restored important mitochondrial functions, suggesting that flickering light might be a potential treatment for AD and similar neurodegenerative conditions.
View Article and Find Full Text PDF
Article Synopsis
  • - Proton pump inhibitors (PPIs) are commonly used medications but can cause serious electrolyte imbalances, particularly low magnesium (hypomagnesaemia), which can lead to additional issues like low calcium (hypocalcaemia) and low potassium (hypokalaemia).
  • - Long-term PPI use disrupts intestinal pH and interferes with magnesium transport mechanisms, which can lead to increased potassium loss and complications in calcium regulation.
  • - These electrolyte imbalances can become severe and resistant to typical supplementation efforts, posing significant health risks for some patients who rely on chronic PPI therapy.
View Article and Find Full Text PDF

Objective: Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment.

View Article and Find Full Text PDF

Martius ex Spreng is a palm tree that is widely distributed in the Central-West region of Brazil. In this study, we investigated whether the oil-loaded nanocapsules of (APON) have acute and long-lasting antihypertensive effects in male spontaneously hypertensive rats (SHR), as well as explored the underlying molecular mechanisms. APON was prepared using the interfacial polymer deposition method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!