The water quality index (WQI) is an important tool for water resource management and planning. However, it has major disadvantages: the generation of chemical waste, is costly, and time-consuming. In order to overcome these drawbacks, we propose to simplify this index determination by replacing traditional analytical methods with ultraviolet-visible (UV-Vis) spectrophotometry associated with artificial neural network (ANN). A total of 100 water samples were collected from two rivers located in Assis, SP, Brazil and calculated the WQI by the conventional method. UV-Vis spectral analyses between 190 and 800 nm were also performed for each sample followed by principal component analysis (PCA) aiming to reduce the number of variables. The scores of the principal components were used as input to calibrate a three-layer feed-forward neural network. Output layer was defined by the WQI values. The modeling efforts showed that the optimal ANN architecture was 19-16-1, trainlm as training function, root-mean-square error (RMSE) 0.5813, determination coefficient between observed and predicted values (R) of 0.9857 (p < 0.0001), and mean absolute percentage error (MAPE) of 0.57% ± 0.51%. The implications of this work's results open up the possibility to use a portable UV-Vis spectrophotometer connected to a computer to predict the WQI in places where there is no required infrastructure to determine the WQI by the conventional method as well as to monitor water body's in real time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-018-6702-7 | DOI Listing |
PLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
Nowadays, the development of plant extracts as corrosion inhibitors to protect metals from corrosion is a popular research direction. However, given the vast diversity of plant species in nature, it is imperative to explore effective methods to improve screening efficiency in order to quickly identify the corrosion inhibition potential of plants. In this work, a new strategy for developing plant-extracted eco-friendly corrosion inhibitors based on the family and genus of plants is proposed.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
The detection of organophosphorus pesticides, particularly chlorpyrifos, in environmental samples is essential due to their widespread use and associated health risks. In this study, we developed a high-sensitivity fluorescent sensing platform utilizing an Isatin-3-allyl-terbium (IS-Tb) complex in solution for the rapid and selective detection of chlorpyrifos in various water samples. The proposed chemical structure of the complex in solution was evaluated using molar ratio method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!