Compassion is a particular form of empathic reaction to harm that befalls others and is accompanied by a desire to alleviate their suffering. This altruistic behavior is often manifested through altruistic punishment, wherein individuals penalize a deprecated human's actions, even if they are directed toward strangers. By adopting a dual approach, we provide empirical evidence that compassion is a multifaceted prosocial behavior and can predict altruistic punishment. In particular, in this multiple-brain connectivity study in an EEG hyperscanning setting, compassion was examined during real-time social interactions in a third-party punishment (TPP) experiment. We observed that specific connectivity patterns were linked to behavioral and psychological intra- and interpersonal factors. Thus, our results suggest that an ecological approach based on simultaneous dual-scanning and multiple-brain connectivity is suitable for analyzing complex social phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931604 | PMC |
http://dx.doi.org/10.1038/s41598-018-24416-w | DOI Listing |
Recurrent neural networks (RNNs) have emerged as a prominent tool for modeling cortical function, and yet their conventional architecture is lacking in physiological and anatomical fidelity. In particular, these models often fail to incorporate two crucial biological constraints: i) Dale's law, i.e.
View Article and Find Full Text PDFBMC Med
January 2025
Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.
Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.
Commun Biol
January 2025
Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, so together may provide a more complete picture of sleep health, while illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.
As the leading cause of dementia worldwide, Alzheimer's Disease (AD) has prompted significant interest in developing Deep Learning (DL) approaches for its classification. However, it currently remains unclear whether these models rely on established biological indicators. This work compares a novel DL model using structural connectivity (namely, BC-GCN-SE adapted from functional connectivity tasks) with an established model using structural magnetic resonance imaging (MRI) scans (namely, ResNet18).
View Article and Find Full Text PDFPharmacol Res
January 2025
Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:
α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!