Generation and annihilation time of magnetic droplet solitons.

Sci Rep

Center for Quantum Phenomena, Department of Physics, New York University, New York, 10003, USA.

Published: May 2018

Magnetic droplet solitons were first predicted to occur in materials with uniaxial magnetic anisotropy due to a long-range attractive interaction between elementary magnetic excitations, magnons. A non-equilibrium magnon population provided by a spin-polarized current in nanocontacts enables their creation and there is now clear experimental evidence for their formation, including direct images obtained with scanning x-ray transmission microscopy. Interest in magnetic droplets is associated with their unique magnetic dynamics that can lead to new types of high frequency nanometer scale oscillators of interest for information processing, including in neuromorphic computing. However, there are no direct measurements of the time required to nucleate droplet solitons or their lifetime-experiments to date only probe their steady-state characteristics, their response to dc spin-currents. Here we determine the timescales for droplet annihilation and generation using current pulses. Annihilation occurs in a few nanoseconds while generation can take several nanoseconds to a microsecond depending on the pulse amplitude. Micromagnetic simulations show that there is an incubation time for droplet generation that depends sensitively on the initial magnetic state of the nanocontact. An understanding of these processes is essential to utilizing the unique characteristics of magnetic droplet solitons oscillators, including their high frequency, tunable and hysteretic response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931510PMC
http://dx.doi.org/10.1038/s41598-018-25134-zDOI Listing

Publication Analysis

Top Keywords

droplet solitons
16
magnetic droplet
12
magnetic
8
high frequency
8
droplet
6
generation
4
generation annihilation
4
annihilation time
4
time magnetic
4
solitons
4

Similar Publications

Magnetic droplet soliton pairs.

Nat Commun

March 2024

Physics Department, University of Gothenburg, 412 96, Gothenburg, Sweden.

We demonstrate magnetic droplet soliton pairs in all-perpendicular spin-torque nano-oscillators (STNOs), where one droplet resides in the STNO free layer (FL) and the other in the reference layer (RL). Typically, theoretical, numerical, and experimental droplet studies have focused on the FL, with any additional dynamics in the RL entirely ignored. Here we show that there is not only significant magnetodynamics in the RL, but the RL itself can host a droplet driven by, and coexisting with, the FL droplet.

View Article and Find Full Text PDF

Discrete and Semi-Discrete Multidimensional Solitons and Vortices: Established Results and Novel Findings.

Entropy (Basel)

February 2024

Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile.

This article presents a concise survey of basic discrete and semi-discrete nonlinear models, which produce two- and three-dimensional (2D and 3D) solitons, and a summary of the main theoretical and experimental results obtained for such solitons. The models are based on the discrete nonlinear Schrödinger (DNLS) equations and their generalizations, such as a system of discrete Gross-Pitaevskii (GP) equations with the Lee-Huang-Yang corrections, the 2D Salerno model (SM), DNLS equations with long-range dipole-dipole and quadrupole-quadrupole interactions, a system of coupled discrete equations for the second-harmonic generation with the quadratic (χ(2)) nonlinearity, a 2D DNLS equation with a superlattice modulation opening mini-gaps, a discretized NLS equation with rotation, a DNLS coupler and its PT-symmetric version, a system of DNLS equations for the spin-orbit-coupled (SOC) binary Bose-Einstein condensate, and others. The article presents a review of the basic species of multidimensional discrete modes, including fundamental (zero-vorticity) and vortex solitons, their bound states, gap solitons populating mini-gaps, symmetric and asymmetric solitons in the conservative and PT-symmetric couplers, cuspons in the 2D SM, discrete SOC solitons of the semi-vortex and mixed-mode types, 3D discrete skyrmions, and some others.

View Article and Find Full Text PDF

Solitons are highly confined, propagating waves that arise from nonlinear feedback in natural (e.g., shallow and confined waters) and engineered systems (e.

View Article and Find Full Text PDF

Formations and dynamics of two-dimensional spinning asymmetric quantum droplets controlled by a PT-symmetric potential.

Chaos

March 2023

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

In this paper, vortex solitons are produced for a variety of 2D spinning quantum droplets (QDs) in a PT-symmetric potential, modeled by the amended Gross-Pitaevskii equation with Lee-Huang-Yang corrections. In particular, exact QD states are obtained under certain parameter constraints, providing a guide to finding the respective generic family. In a parameter region of the unbroken PT symmetry, different families of QDs originating from the linear modes are obtained in the form of multipolar and vortex droplets at low and high values of the norm, respectively, and their stability is investigated.

View Article and Find Full Text PDF

We look into dark solitons in a quasi-1D dipolar Bose gas and in a quantum droplet. We derive the analytical solitonic solution of a Gross-Pitaevskii-like equation accounting for beyond mean-field effects. The results show there is a certain critical value of the dipolar interactions, for which the width of a motionless soliton diverges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!