Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between and its nonnodulating relative demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of and the legume revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including () and (). Comparative analysis of genomes from three species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of , , and Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960304 | PMC |
http://dx.doi.org/10.1073/pnas.1721395115 | DOI Listing |
FEBS Lett
December 2024
Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan.
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system.
View Article and Find Full Text PDFCirc Res
December 2024
Cardiovascular Research Center, Massachusetts General Hospital, Boston. (C.C., P.X., Z.Y., Y.S., E.S.L., J.D.R., M.C.H.).
Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by systemic endothelial dysfunction. The pathophysiology of preeclampsia remains incompletely understood. This study used human venous endothelial cell (EC) transcriptional profiling to investigate potential novel mechanisms underlying EC dysfunction in preeclampsia.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
December 2024
Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico.
Congenital heart defects (CHDs) are caused by a complex interaction between numerous genetic and environmental risk factors, some of which may differ between different populations. A case-control study was conducted among 1232 newborns, including 308 patients with isolated CHDs (cases) and 924 infants without birth defects (controls), born all during the period 2009-2023 at the Hospital Civil de Guadalajara "Dr. Juan I.
View Article and Find Full Text PDFCancer Res Treat
December 2024
Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Purpose: Multigene assays guide treatment decisions in early-stage hormone receptor-positive breast cancer. OncoFREE, a next-generation sequencing assay using 179 genes, was developed for this purpose. This study aimed to evaluate the concordance between the Oncotype DX (ODX) Recurrence Score (RS) and the OncoFREE Decision Index (DI) and to compare their performance.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Economics, Faculty of Social Sciences, Brock University, St. Catharines, ON, Canada.
Although lab-coat genomics scientists are highly skilled and involved in pioneering work, few studies have examined their perceptions on what they do, and how they relate with others in interdisciplinary work. Recognizing that gap, we were curious to talk with scientists about their current work and positionalities related to the use of genomics for bioremediation. Using unstructured open-ended interviews and thematic analysis, we interviewed researchers with diverse genomics-related expertise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!