Chronic kidney disease (CKD) causes dysregulation of mineral metabolism, vascular calcification and renal osteodystrophy, an entity called 'CKD-Mineral and Bone Disorder' (CKD-MBD). Here we determine whether metformin, an anti-diabetic drug, exerts favorable effects on progressive, severe CKD and concomitant mineral metabolism disturbances. Rats with CKD-MBD, induced by a 0.25% adenine diet for eight weeks, were treated with 200 mg/kg/day metformin or vehicle from one week after CKD induction onward. Severe, stable CKD along with marked hyperphosphatemia and hypocalcemia developed in these rats which led to arterial calcification and high bone turnover disease. Metformin protected from development toward severe CKD. Metformin-treated rats did not develop hyperphosphatemia or hypocalcemia and this prevented the development of vascular calcification and inhibited the progression toward high bone turnover disease. Kidneys of the metformin group showed significantly less cellular infiltration, fibrosis and inflammation. To study a possible direct effect of metformin on the development of vascular calcification, independent of its effect on renal function, metformin (200 mg/kg/day) or vehicle was dosed for ten weeks to rats with warfarin-induced vascular calcification. The drug did not reduce aorta or small vessel calcification in this animal model. Thus, metformin protected against the development of severe CKD and preserved calcium phosphorus homeostasis. As a result of its beneficial impact on renal function, associated comorbidities such as vascular calcification and high bone turnover disease were also prevented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2018.01.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!