Background: Suitable and scalable in vitro culture conditions for parasite maintenance are needed to foster drug research for loiasis, one of the neglected tropical diseases which has attracted only limited attention over recent years, despite having important public health impacts. The present work aims to develop adequate in vitro culture systems for drug screening against both microfilariae (mf) and infective third-stage larvae (L3) of Loa loa.

Methods: In vitro culture conditions were evaluated by varying three basic culture media: Roswell Park Memorial Institute (RPMI-1640), Dulbecco's modified Eagle's medium (DMEM) and Iscove's modified Dulbecco's medium (IMDM); four sera/proteins: newborn calf serum (NCS), foetal bovine serum (FBS), bovine serum albumin (BSA) and the lipid-enriched BSA (AlbuMax® II, ALB); and co-culture with the Monkey Kidney Epithelial Cell line (LLC-MK2) as a feeder layer. The various culture systems were tested on both mf and L3, using survival (% motile), motility (T = mean duration (days) at which at least 90% of parasites were fully active) and moulting rates of L3 as the major criteria. The general linear model regression analysis was performed to assess the contribution of each variable on the viability of Loa loa L3 and microfilarie. All statistical tests were performed at 95% confidence interval.

Results: Of the three different media tested, DMEM and IMDM were the most suitable sustaining the maintenance of both L. loa L3 and mf. IMDM alone could sustain L3 for more than 5 days (T = 6.5 ± 1.1 day). Serum supplements and LLC-MK2 co-cultures significantly improved the survival of parasites in DMEM and IMDM. In co-cultures with LLC-MK2 cells, L. loa mf were maintained in each of the three basic media (T of 16.4-19.5 days) without any serum supplement. The most effective culture systems promoting significant moulting rate of L3 into L4 (at least 25%) with substantial maintenance time were: DMEM + BSA, DMEM + NCS, DMEM-AlbuMax®II, DMEM + FBS all in co-culture with LLC-MK2, and IMDM + BSA (1.5%), DMEM + FBS (10%) and DMEM + NCS (5%) without feeder cells. DMEM + 1% BSA in co-culture scored the highest moulting rate of 57 of 81 (70.37%). The factors that promoted L. loa mf viability included feeder cells (β = 0.490), both IMDM (β = 0.256) and DMEM (β = 0.198) media and the protein supplements NCS (β = 0.052) and FBS (β = 0.022); while for L. loa L3, in addition to feeder cells (β = 0.259) and both IMDM (β = 0.401) and DMEM (β = 0.385) media, the protein supplements BSA (β = 0.029) were found important in maintaining the worm motility.

Conclusions: The findings from this work display a range of culture requirements for the maintenance of Loa loa stages, which are suitable for developing an effective platform for drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930665PMC
http://dx.doi.org/10.1186/s13071-018-2852-2DOI Listing

Publication Analysis

Top Keywords

vitro culture
16
culture systems
16
loa loa
12
feeder cells
12
loa
11
dmem
11
culture
8
microfilariae infective
8
larvae loa
8
culture conditions
8

Similar Publications

Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.

Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!