Background: Ovarian cancer stem cells (OCSCs) contribute to the poor prognosis of ovarian cancer. Involvement of the androgen receptor (AR) in the malignant behaviors of other tumors has been reported. However, whether AR associates with Nanog (a stem cell marker) and participates in OCSC functions remain unclear. In this study, we investigated the interaction of Nanog with AR and examined whether this interaction induced stem-like properties in ovarian cancer cells.
Methods: AR and Nanog expression in ovarian tumors was evaluated. Using the CRISPR/Cas9 system, we constructed a Nanog green fluorescent protein (GFP) marker cell model to investigate the expression and co-localization of Nanog and AR. Then, we examined the effect of androgen on the Nanog promoter in ovarian cancer cell lines (A2780 and SKOV3). After androgen or anti-androgen treatment, cell proliferation, migration, sphere formation, colony formation and tumorigenesis were assessed in vitro and in vivo.
Results: Both AR and Nanog expression were obviously high in ovarian tumors. Our results showed that Nanog expression was correlated with AR expression. The androgen 5α-dihydrotestosterone (DHT) activated Nanog promoter transcription. Meanwhile, Nanog GFP-positive cells treated with DHT exhibited higher levels of proliferation, migration, sphere formation and colony formation. We also observed that the tumorigenesis of Nanog GFP-positive cells was significantly higher than that of the GFP-negative cells. Xenografts of Nanog GFP-positive cells showed significant differences when treated with androgen or anti-androgen drugs in vivo.
Conclusions: The interaction of Nanog with the AR signaling axis might induce or contribute to OCSC regulation. In addition, androgen might promote stemness characteristics in ovarian cancer cells by activating the Nanog promoter. This finding merits further study because it may provide a new understanding of OCSC regulation from a hormone perspective and lead to the reevaluation of stem cell therapy for ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930492 | PMC |
http://dx.doi.org/10.1186/s13048-018-0403-2 | DOI Listing |
Despite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.
View Article and Find Full Text PDFCancer Drug Resist
December 2024
Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.
Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People's Republic of China.
Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
December 2024
Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, KSA.
Objectives: , which is primarily recognized for determining blood types, shows variable expression patterns in different tissues and cancer types. This study investigated the relationship between gene expression and cancer, and assessed its potential impact on patient survival.
Methods: Utilizing the GEPIA database, we analyzed expression in normal and tumor tissues across various cancer types using online tools for comprehensive evaluation.
Mol Ther Oncol
December 2024
Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
Drug repurposing has potential to improve outcomes for high-grade serous ovarian cancer (HGSOC). Repurposing drugs with PARP family binding activity may produce cytotoxic effects through the multiple mechanisms of PARP including DNA repair, cell-cycle regulation, and apoptosis. The aim of this study was to determine existing drugs that have PARP family binding activity and can be repurposed for treatment of HGSOC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!