Background: Increased vascular permeability is a pathophysiological hallmark of sepsis and results in increased transcapillary leakage of plasma fluid, hypovolemia, and interstitial edema formation. 6% hydroxyethyl starch (HES 130/0.4) is commonly used to treat hypovolemia to maintain adequate organ perfusion and oxygen delivery. The present study was designed to investigate the effects of 6% HES 130/0.4 on glycocalyx integrity and vascular permeability in lipopolysaccharide (LPS)-induced pulmonary inflammation and systemic inflammation in mice.

Methods: 6% HES 130/0.4 or a balanced electrolyte solution (20 ml/kg) was administered intravenously 1 h after cecal ligation and puncture (CLP) or LPS inhalation. Sham-treated animals receiving 6% HES 130/0.4 or the electrolyte solution served as controls. The thickness of the endovascular glycocalyx was visualized by intravital microscopy in lung (LPS inhalation model) or cremaster muscle (CLP model). Syndecan-1, hyaluronic acid, and heparanase levels were measured in blood samples. Vascular permeability in the lungs, liver, kidney, and brain was measured by Evans blue extravasation.

Results: Both CLP induction and LPS inhalation resulted in increased vascular permeability in the lung, liver, kidney, and brain. 6% HES 130/0.4 infusion led to significantly reduced plasma levels of syndecan-1, heparanase, and hyaluronic acid, which was accompanied by a preservation of the glycocalyx thickness in postcapillary venules of the cremaster (0.78 ± 0.09 μm vs. 1.39 ± 0.10 μm) and lung capillaries (0.81 ± 0.09 μm vs. 1.49 ± 0.12 μm).

Conclusions: These data suggest that 6% HES 130/0.4 exerts protective effects on glycocalyx integrity and attenuates the increase of vascular permeability during systemic inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5930811PMC
http://dx.doi.org/10.1186/s13054-017-1846-3DOI Listing

Publication Analysis

Top Keywords

vascular permeability
24
lps inhalation
12
hydroxyethyl starch
8
starch 130/04
8
permeability systemic
8
pulmonary inflammation
8
increased vascular
8
glycocalyx integrity
8
systemic inflammation
8
electrolyte solution
8

Similar Publications

Endothelial cell-selective adhesion molecule (ESAM) is a member of tight junction molecules, highly abundant in the heart and the lung, and plays a role in regulating endothelial cell permeability. We previously reported that mice with genetic ESAM deficiency (ESAM) exhibit coronary microvascular dysfunction leading to the development of left ventricular diastolic dysfunction. Here, we hypothesize that ESAM mice display impairments in the pulmonary vasculature, affecting the overall pulmonary vascular resistance (PVR).

View Article and Find Full Text PDF

Novel Insights on the Biology and Immunological Effects of Histamine: A Road Map for Allergists and Mast Cell Biologists.

J Allergy Clin Immunol

December 2024

Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany. Electronic address:

Histamine (CHN, molecular weight 111.15 g/mol) is a well-studied endogenous biogenic amine composed of an imidazole ring attached to an ethylamine side chain. It has a limited half-life of a few minutes within tissues and in circulation.

View Article and Find Full Text PDF

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

King cobra () venom comprises a diverse array of proteins and peptides. However, the roles and properties of these individual components are still not fully understood. Among these, Cysteine-rich secretory proteins (CRiSPs) are recognized but not fully characterized.

View Article and Find Full Text PDF

Aims: This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity.

Methods: Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!