A novel method based on signal superimposing has been presented to simultaneously measure the dynamic emissivity and the radiance of a shocked sample/window interface in the near-infrared wavelength. In this method, we have used three rectangle laser pulses to illuminate the sample/window interface via an integrating sphere and expect that the reflected laser pulses from the sample/window interface can be superimposed on its thermal radiation at the shocked steady state by time precision synchronization. In the two proving trials, the second laser pulse reflected from the Al/LiF interface has been successfully superimposed on its thermal radiation despite large flyer velocity uncertainty. The dynamic emissivity and the radiance at 1064 nm have been obtained simultaneously from the superimposing signals. The obtained interface temperatures are 1842 ± 82 K and 1666 ± 154 K, respectively, the corresponding release pressures are 65.7 GPa and 62.6 GPa, and the deduced Hugonoit temperatures are consistent with the theoretical calculations. In comparison, the fitting temperatures from the gray body model are 300-500 K higher than our experimental measurement results and the theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5007194 | DOI Listing |
Nanophotonics
April 2024
Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China.
Radiative cooling in smart windows using VO - a dynamic thermal management material, is of potential interest for enhancing energy savings in buildings due to its both solar and emittance tuneability in response to changing temperatures. However, studies related to the effects of VO thin film microstructure in a multilayer system on emissivity regulation are currently lacking. The present study addresses the thermochromic and emissivity performance of VO/ZnSe/ITO/Glass Fabry-Perot (F-P) cavity thin film system, by manipulating the porosity in VO thin film.
View Article and Find Full Text PDFNanophotonics
July 2024
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China.
The heat generation of the human body dramatically varies between resting and active status, so dynamic heat dissipation is required to ensure optimal thermal comfort. Herein, we propose a spectrally self-adaptive smart fabric (SSSF) by covering polyester fabric with silver nanowires, which autonomously adjusts its emissivity in response to the body's movement status from dry to wet states. During periods of inactivity, the SSSF maintains radiative heat insulation with a low emissivity state of 0.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.
During the heat treatment of square or rectangular steel sections, a heated charge, arranged in regular packages, is placed inside a furnace. This type of charge forms a porous medium through which a complex heat flow occurs during heating. Several heat transfer mechanisms act simultaneously within this medium: conduction through the section walls, conduction and natural convection within the gas, thermal radiation between the section walls, and complex heat transfer (mainly contact conduction) at the joints between the adjacent sections.
View Article and Find Full Text PDFCell Rep Phys Sci
November 2024
Department of Applied Physics, Aalto University, FIN-02150 Espoo, Finland.
Controlled tailoring of atomically thin MXene interlayer spacings by surfactant/intercalants (e.g., polymers, ligands, small molecules) is important to maximize their potential for application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!